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Abstract: A tutorially orientated account of the 
principles underlying circuit level simulation 
forms the basis for discussing reliability of circuit 
level simulation. An outline of equation formula- 
tion and time discretisation of the equations is 
followed by consideration of stability of the 
numerical integration methods. The precision of 
simulation, which also depends on the integration 
methods used, is then discussed, with particular 
reference to the analysis parameters of the SPICE 
simulator. A descriptive account of the Newton- 
Raphson method of solving the nonlinear alge- 
braic equations, derived from the discretised 
differential equations, is then presented again with 
relation to SPICE parameters. The reasons for 
convergence failure in both transient and DC 
simulation are related to the underlying principles 
of simulation and possible ill conditioning of the 
circuit. The paper includes some simple simulation 
examples of problematic situations. 

1 Introduction 

Four principal issues affect the reliability of circuit level 
simulation. They are numerical stability of integration, 
precision of results at each time step, convergence at each 
time step, and adequacy of device modelling. The latter is 
not a topic considered in this paper. Any discussion of 
circuit level simulation needs to be related to the ubiquit- 
ous SPICE program and so, throughout this paper, 
upper case strings in parentheses refer to SPICE control 
parameters and any textual reference is to SPICE version 
3E2 [l]. Earlier versions might not necessarily be algo- 
rithmically equivalent to 3E2 in all details. The authors 
are aware that not all copies of version 2G6 are identical. 

The method underlying simulation is first, the formu- 
lation of a coupled set of nonlinear first-order differential 
algebraic equations representing the behaviour of the 
interconnected set of devices comprising the circuit [2,3]. 

The second step is the replacement of the time deriv- 
atives in the differential equations by finite difference 
approximations (known as integration formulas) which 
discretise time, in general, in a nonuniform way. This step 
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transforms the nonlinear differential equations, at  each 
discretised time point, into a time independent set of non- 
linear equations. 

The third step is to solve the nonlinear equations, at 
each discretised time, by the Newton-Raphson technique 
which approximates them with a linear set of equations 
based on an initial estimate of the solution. Repeated 
solution of the linear set, with relinearisation of the q u a -  
tion set after each iteration, is used to refine the solution 
estimate until it is deemed that adequate precision has 
been achived (RELTOL, ABSTOL, VNTOL). 

The converged solution of the Newton-Raphson 
process is then tested (TRTOL) as an adequate solution 
of the differential equation set for this time point. Action, 
as described later, is necessary when the Newton- 
Raphson iterations fail to converge to a solution, or con- 
vergence is attained but the circuit solution is too 
imprecise or is numerically unstable. The action taken 
normally involves cutting the time increment and repeat- 
ing the solution process at the same time point. 

Having arrived at a satisfactory solution at the time 
point, a trial time increment to advance to a new point is 
selected, and a prediction of the solution at the new point 
is made. This prediction is used as the initial estimate of 
the solution for the Newton-Raphson process at the new 
time point. Thus simulation proceeds as a march-in-time 
through a sequence of discretised time points selected to 
achieve both convergence of the Newton-Raphson 
process and adequate precision of simulation. This 
implies that a satisfactory initial estimate of the circuit 
state is available at the start of the simulation. Obtaining 
this is known as the DC solution. Often, this is the most 
demanding problem in circuit simulation, and methods of 
solving it are discussed in this paper. 

For a given circuit, numerical stability of integration 
depends on the integration formula being used and the 
size of the discretised time step; in adverse situations, 
convergence failure can occur. Precision problems can 
arise because of too coarse granularity of time dis- 
cretisation, for a given integration formula, or because of 
limited floating-point number precision in determining 
convergence of the Newton-Raphson process, or because 
of near singularity of the coefiicient matrix of the linear 
equation set. The last of these can also contribute to con- 
vergence problems, but the main cause of convergence 
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failure is an inappropriate estimate used to initiate the 
Newton-Raphson iterative process. These are the issues 
addressed in this contribution. 

2 

Different simulators use different formulations of the 
circuit equations. For example, SPICE uses the modified 
nodal [4] formulation and ASTAP the sparse tableau [SI 
formulation. Whichever formulation is used, the generic 
result is a coupled set of nonlinear first-order differential 
algebraic equations of the form 

( 1 )  
Here, x( t )  is the vector of circuit variables (e.g. node volt- 
ages and charges or branch currents), x'(t) is the deriv- 
ative of this vector, with respect to time t, andf( . )  is a 
nonlinear vector function. The finite difference expression 
(differentiation formula [6, 71 to be used to approximate 
the time derivatives has the form 

Formulating the discrete time nonlinear 
equations 

f ( x ( t ) ,  x'(0, t )  = 0 

k 

where h, is the time step in advancing to discretised time 
t, from discretised time t,-,, and the coefficients (I, are 
rational functions of h, and up to k of the preceding 
values of time step. Substitution for x' in eqn. 1 yields 

Thus, the nonlinear differential equations, at each dis- 
cretised time point, have been transformed into a time 
independent set of nonlinear equations: 

F(x)  = 0 (4) 
where x = x ,  and F( .) is a nonlinear function readily 
derived fromf( .). Before considering the numerical solu- 
tion of this last equation, in the next Section, the stability 
of the numerical integration of the discrete time point 
approximation to the differential equation will be 
reviewed. 

3 Numerical integration 

The stability of a nonlinear differential system is most 
easily addressed by considering its state equation 

= S(5, t), where the 5 is the state vector, and S(.) is a 
nonlinear function [SI. In an electric circuit, the com- 
ponents of the state vector are an independent, but com- 
plete, subset of its capacitor charges and inductor fluxes. 
The circuit equation set eqn. 1 can always be translated 
[ 9 ]  into a state equation form but, for a nonlinear circuit, 
possibly only on a small neighbourhood of any value of 

When linearised on a small neighbourhood of 5,  the 
state equation is r' = A t  + Bu(t), where A and B are con- 
stant matrices and u(t) represents the external excitations. 
Deductions concerning the stability of the system rep- 
resented by the state equation, and the stability of 
numerical integration of discrete time approximations of 
the equation, are normally obtained by transforming [ l o ,  
121 the state vector 5 to the normal mode vector 1. When 
the normal modes (eigenvalues of A) of the system are 
distinct, this effects a corresponding transformation of the 
matrix A to a diagonal form with elements equal to the 
eigenvalues of A. The 5 to rj transformation matrix in this 
case comprises the set of corresponding eigenvectors. 

X .  
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When some normal modes are not distinct (i.e. degener- 
ate with multiplicity), the transformed A matrix is not 
quite diagonal [ 1 1 ]  but its diagonal elements are still the 
eigenvalues, with each nondistinct one appearing with its 
degenerate multiplicity. These normal forms simplify the 
system differential equation, by decoupling its component 
equations and thus allowing their separate integration, 
which makes the numerical stability analysis of integra- 
tion formulas easier. For more details of this analysis, the 
reader is referred elsewhere [8, l o ] .  

In the absence of external excitations, for a stable dis- 
sipative system, both c and q + O  as time increases. 
Analysis of the kind described in the preceding paragraph 
then shows that, for system stability of 5' = At ,  the eigen- 
values of A must lie in the left half complex plane. The 
real part of an eigenvalue is related to a reciprocal time 
constant of the system, and the imaginary part is a 
normal mode frequency; complex eigenvalues occur in 
complex conjugate pairs. 

The use of a differentiation formula replaces r' with a 
finite difference approximation, effectively discretising 
time, which alters the regon of stability in the complex 
plane so that, in general, it is no longer the left half plane 
and, further, in a way that depends on the time step h. 
This is illustrated in Fig. 1 by the stable (shaded) regions 

numerical stability: one-step formulas 

IW J U J  

farword Euler backward Euler trapezoidol 
A-stable A-stable 

SPICE default 

Fig. 1 Stability, one-step integration formulas 

for the three one-step formulas 

(5) 

(6) 

X, = x,- + $h,(xb + x:- ,) (7) 

x ,  = x n - ,  + h,xb- ,  

X, = x.-, + h,x; 

known as the forward Euler, backward Euler and trapez- 
oidal rule, respectively. The first of these is an explicit 
formula and the last two are implicit formulas in that the 
expression for x, does or does not depend on xb. In Fig. 
1, a real eigenvalue (X) or a complex conjugate eigen- 
value pair (X, X) in a shaded region corresponds to 
stable integration but in a nonshaded region to numerical 
instability. Thus, for stable numerical integration, all 
eigenvalues of A must lie in the shaded region. 

A differentiation formula which provides for numeric- 
ally stable integration whenever the system is stable, 
regardless of the time step h, is said to be A-stable; thus, 
in Fig. 1 ,  the backward Euler and trapezoidal rule are 
A-stable formulas, but the forward Euler formula has a 
very limited stability region unless the time step h is kept 
so small throughout the simulation as to always include 
all the eigenvalues of A within the region. For electronic 
circuits, which normally have eigenvalue magnitudes 
spanning at least several decades, this leads to impractic- 
ally long simulations [SI. Systems with a wide spread of 
eigenvalues are said to be stiff. 

In the foregoing, we could have referred to integration 
formulae rather than differentiation formulas. If eqn. 2 is 
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transposed so that x, is expressed in terms of x,-,(O < 
r < s) and x;, it is called an inegration formula [lo]. 
More generally, a pth-order integration formula is an 
expression for x, as a sum of terms in x,-,(O < r d s) and 
in xk-,(O < r < s) in which a total of just p + 1 of the 
coefficients of the x n - ,  and xb-, are nonzero. The formula 
is explicit if the coefficient of x; is zero and implicit other- 
wise. The coefficients of any particular integration 
formula are chosed to give the best approximation [6] to 
the solution of the equation set. The use of a first-order 
differentiation formula or the corresponding first-order 
integration formula for the forward and backward Euler 
methods is equivalent; substituting the differentiation 
formula for the derivative in the state equation gives the 
same result as substituting the state equation into the 
integration formula. The trapezoidal rule, however, is an 
integration formula with no corresponding form of differ- 
entiation formula, since it contains two derivative terms. 
In practice, eqn. 2 is not substituted into eqn. 1 but 
rather integration formulas are used at the device level in 
companion models [8, 121, in which nonlinear character- 
istics of devices are also linearised (effectively a Newton- 
Raphson process step), and which are used to build the 
linear equation set directly. This approach to building the 
linear equation set has advantages in that convergence 
and simulation precision can be monitored at the device 
level. 

The default integration formula (METHOD) used in 
SPICE is the trapezoidal rule. Although, ideally, this rule 
is A-stable and the region of stability is the left half 
complex plane, because of linearisation and numerical 
rounding errors, the boundary of this region becomes 
somewhat fuzzy. This causes problems in simulation of 
stable high-Q circuits for which a complex conjugate pair 
of eigenvalues of A lie close to, but to the left of, the 
imaginary axis in the complex plane (see Fig. 1). The 
usual manifestation of the problem is a ringing pertur- 
bation, often of some magnitude, on an otherwise correct 
waveform. Excessive computation can result as a conse- 
quence of the reduction in the time step h needed to 
follow the spurious oscillaton. 

SPICE allows an implicit multistep integration 
formula (METHOD = GEAR) 

k 

x, = 1 a,x,-, + h,px; (8 )  

to be used instead of the trapezoidal rule. Here, B is 
another coefficient like a,. This formula is one of the 
general class described in eqn. 2. The region of stability of 
the two-step second-order Gear formula always includes 
the whole of the left half complex plane provided [13] the 
ratio r = h,,/hJh,- does not exceed unity; see Fig. 2 which 
shows the stability regions for r values of 1.0, 1.5 and 2.0. 
In SPICE, the Gear second-order formula is used with 
r = 1 (when the step size is changed, an initial backward 
Euler step is taken and then the Gear formula is 
restarted) and so is A-stable (note [14], there is no A- 
stable formula of order greater than two). Stable high-Q 
circuits can therefore be simulated without producing the 
spurious ringing effect, provided the formula order does 
not exceed two and the time step expansion ratio is kept 
less than unity (the latter in simulators other than 
SPICE). The region of stability of this formula, however, 
includes some of the right half complex plane. The 
boundary of the region, while still touching the origin, is 
bent away from the imaginary axis increasingly as h, is 
made larger. In simulation, genuine oscillations are 
damped out when the eigenvalues of A fall into the 

, = I  
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region of stability (as indicated by the crosses to the right 
of the imaginary axis in Fig. 1). Real difficulty arises 
when it is not known in advance whether a high-Q circuit 
is a stable amplifier or an oscillatory. 

In Fig. 3 the results of simulation of a simple circuit 
are shown; (a) using the SPICE default trapezoidal rule 
and (b) using the second-order Gear formula, otherwise 

Fig. 2 Stability, Shichmon-Gear second-order formula 

trapezoidal 

41 1 I 
20 40 60 80 100 0 

a 

second-order gear 

1 

20 40 60 80 100 0 
e-75 time 

b 
Fig. 3 High-Q circuit simulation waveforms 
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the circuit and the simulation parameters are identical. 
The circuit comprised a JFET device in series with a 
high-Q (about 100) tuned circuit, initially quiescent, and a 
DC supply. A 10 ns pulse to the gate of the JFET ener- 
gises the tuned circuit, which rings after the pulse is 
removed. Note, the tuned circuit is always shunted by the 
output conductance of the JFET which changes when it 
is pulsed. Whether the trace in (a) is exhibiting some 
numerical instability or whether the trace in (b) is being 
damped by the Gear formula is a matter of some specula- 
tion! Nonlinearity of the JFET model precludes exact 
analysis of the circuit and hence resolution of this specu- 
lation. 

4 Precision in simulation 

An integration formula is, in effect, a limited number of 
terms of a Taylor expansion of the solution function with 
respect to time. The more terms used, the higher the 
order of approximation and this order is also identified 
with the integration formula. The remainder of the 
expansion is referred to as the local truncation error 
which is expressed as a complexity in terms of a power of 
the time step h. For example, by performing Taylor 
expansions of x, about t m - i  and of x . - ~  about t,, and 
with a little manipulation to eliminate the terms in xb, 
the following expression can be obtained 

X, = x,- + +h,(x; + x;- 1) - &hi X: + O(h:) (9) 
This is the trapezoidal rule including the local truncation 
error represented by the last two terms on the right-hand 
side. The complexity of the error for this rule is therefore 
0 ( h 3 ) .  The Gear formula of order two also has local trun- 
cation error of this order. Higher-order Gear formulas 
with less truncation error are seldom used because of 
their inherent numerical instability. 

In SPICE, the required maximum local truncation 
error is specified as, in effect, a multiple (TRTOL) of the 
appropriate Newton-Raphson convergence requirement 
(RELTOL, ABSTOL, VNTOL) and also a charge toler- 
ance parameter (CHGTOL) for capacitive elements 
(SPICE does not appear to have a corresponding param- 
eter for inductive elements). When the test fails for any 
circuit element, the time step h is cut and the solution at 
the time point is repeated. When the test is satisfied, the 
parameters (TRTOL, CHGTOL, RELTOL, ABSTOL 
and possibly others) are used to calculate a precision- 
compatible estimate of the next time step for the element. 
Each calculation is based on a measure of the local trun- 
cation error for that element. The actual next time step h 
used is then the minimum of the calculated time steps of 
all the elements. This is intended to be the main mecha- 
nism of time step control. But note, subsequently, this 
time step might be rejected if a convergence or precision 
problem arises at the time point which would then be 
reworked with a smaller step h. 

The initial estimate of the solution at a time point can 
be obtained by prediction from the solutions at prior 
time points. Provided the prediction is within the region 
of convergence of the Newton-Raphson process, iter- 
ations of the latter then converge the prediction to the 
correction (i.e. to an acceptable solution of the differential 
equation set). A predictor formula is similar to an integ- 
ration formula but is explicit (i.e. the expression for x, 
does not involve a term in x;). Provided the predictor is 
of the same order as that of the integration formula, the 
difference between the corrected and predicted values can 
be shown, again by Taylor expansion manipulations, to 
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have the same complexity as the local truncation error 
(e.g. O(h3)), and can therefore be used as an estimate of 
the latter. Such an estimate is used both to control the 
size of the next time step, and also to check the precision 
of simulation after the step. 

The mechanism described in the preceding paragraph 
is illustrated in Fig. 4 for a one-dimensional example 

h i  
2 1  

1 ,  

' h 2 h 3 h ' h 5  
t 5' 

h i  
2 1  

1 ,  

' h 2 h 3 h ' h 5  
t 5' 

Fig. 4 March-in-time simulation, predictor-corrector 

using a first-order predictor (e.g. the forward Euler) and, 
by implication, a first-order integrator (e.g. the backward 
Euler). In this Figure, it is assumed, for simplicity of 
explanation, that an exact solution has been obtained at 
point 1 on the time axis and that a next time step h has 
already been selected by some means. The slope of the 
solution at the point is used to predict the solution P at 
the next time point 2. The prediction, which is within the 
region of convergence of the Newton-Raphson process 
(indicated by range bars in the figure), is used as the 
initial estimate, and so the solution converges to the cor- 
rection C. The difference between the actual solution (on 
the curve) and C is the local truncation error, but the 
curve is not known, so, that between C and P is used as 
the measure of local truncation error and, this being 
within the prescribed simulation precision (TRTOL), the 
solution is accepted. Had the error been too large, the 
time step h would have been cut, and the solution at a 
revised time point (after point 1)  re-evaluated, repeatedly 
if necessary. In either event, the measure of truncation 
error and the prescribed simulation precision are used to 
evaluate a suitable value for the next time step h. In some 
simulators, the next time step is not reevaluated unless 
either the time step must be cut or the solution at the 
point is deemed far too precise. In Fig. 4, h is unchanged 
for the next step. Having decided h, the prediction P at 
time point 3 is made and is within the region of con- 
vergence, and so the correction C is obtained. 

The procedure just described is repeated to obtain the 
prediction P and correction C at time point 4 but at 
point 5,  because the solution curve has dropped mark- 
edly, the prediction P is outside the region of con- 
vergence, so the time step is halved and a new prediction 
P made, which happens to be within the region of con- 
vergence at the new, closer, time point 5'. In actuality, the 
solution is a multidimensional vector, and so some mag- 
nitude or norm of the difference. between P and C must 
be used. 

In SPICE, the implementation of this method is an 
option (by conditional compilation) available only for the 
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Gear formula, otherwise the estimation of error is based 
on divided differences (to estimate x”‘; see Fig. 5 which 
indicates the first few steps in this process) of solutions at 

Fig. 5 Differential coeficients by divided difference method 

prior time points. Also, without the option, the initial 
estimate of the solution is taken as the converged solu- 
tion at the last time point. There is some experimental 
evidence [l5] that the latter strategy requires fewer iter- 
ations in total, in the simulation, for predictions can be 
way off target when, with the larger time steps, a fast 
changing waveform suddenly levels out. Fig. 6 stresses 

I I 
I h I  2h I 

I 

In-2 tn-1 tn 
time 

Fig. 6 Initial estimate, prediction versus last point 

this point; it might be better to use the solution to 
start the Newton-Raphson process at tn rather than the 
prediction at P. 

Truncation errors can accumulate over present and 
past time steps; in Fig. 4, the error at time point 3 
appears to be the sum of the local truncation errors at 
points 2 and 3. With stable numerical integration, 
however, the local truncation error generated at a step 
decays with further steps. The rate of decay is related to 
circuit time constants associated with its acquisition. The 
local truncation error propagates along with the solution 
in a way comparable to the response of the circuit to a 
pulse. When solution waveforms are not changing 
rapidly, and the time step is long, the local truncation 
errors more or less decay away completely between adja- 
cent time points, and the total error at a time point is 
reasonably represented by the local truncation error. 
When, however, a waveform changes rapidly, the time 
step shortens and local truncation errors from previous 
time points have not decayed before more such error is 
accumulated at the present time point. In fast transients, 
the total error in a waveform can be as much as an order 
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of magnitude larger than the local truncation error. In 
logic circuits this is manifested as an error in propagation 
delay; see Fig. 7. Repeated simulations, at higher preci- 
sion, are needed to check that simulated delays have not 
changed significantly. 

error in propagation delay 
/ accumulated LTEs 

one LTE error 

simulation 

l ime 

Error in propagation delayporn accumulated LTEs Fig. 7 

SPICE disguises the foregoing problem to some extent 
by ignoring decay of local truncation error, and by using 
an error rate [14] of complexity O(h3)/h = O(h2) to 
control the time step h. Thus, for the trapezoidal rule, the 
local truncation error rate is taken as 

(10) LTE = (&)h2xr < emnx 

where e,,,,,= is the prescribed precision derived from the 
corresponding parameters (see later below), and so the 
next time step is chosen as 

h = (12e,Jx3/’ (11) 
This expression is used also to check if the step just taken 
satisfies the precision requirement; if the step size is 
greater than h, it is rejected and the time point is 
reworked. The equivalent expression used in SPICE for 
the Gear method is 

h = (e,Jak XIk+ ’))’/’ (12) 
where k is the order of the formula and a, is a constant 
depending on k. 

The evaluation of e,= for a capacitor element in terms 
of SPICE parameters is as follows. First, an internal 
current tolerance parameter 

itol = ABSTOL + RELTOL x max (last or new I i, I )  
(13) 

is defined where i, is the capacitor current, and last and 
new refer to the previous and present values, respectively. 
Similarly, an internal charge tolerance parameter 

iqtol = RELTOL x max (qtol or CHGTOL)/h, 

with qtol = max (last or new I q. I )  (14) 
is defined where q. is the capacitor charge. (Note that 
CHGTOL is scaled by RELTOL in this expression.) 
These two parameters are then used to specify 

(15) 
in this case for the trapezoidal rule or the second-order 
Gear formula. SPICE uses the 0.5 heuristically as a 
multiplier of the third derivative of the capacitor charge. 

The default values of ABSTOL, RELTOL, TRTOL 
and CHGTOL in SPICE are 1 PA, 0.001, 7 and 0.01 pC, 
respectively. To illustrate the implications of these values, 
we consider the decay of 1 pC of charge from a 1 pF 

elMx = TRTOL x max (itol or iqtol)/(l2 x 0.5) 
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capacitor in a situation where the effective time constant 
of discharge is 1 ps. We assume an initial time step of 
0.2 p .  The parameters itol and iqtol then evaluate to 

lohrn 997H 1003H \ohm 

Fig. 8 Circuitfor precision test simulations 

I C 

I 
0 2 L 6 8 10 

t ime,  ks 

Fig. 9 Simulation envelopesfiom precision tests 

1 nA and 5 nA, respectively, and emx to about 5.5 nA 
which represent an error of about 0.5% in the current 
discharging from the capacitor. Evaluating analytically 
qr for the discharging capacitor, and using eqn. 11, the 
prediction for the next step size h then becomes 0.26 ps 
which is compatible with our assumed initial step size, 
bearing in mind that the current is decaying. This 
example highlights the heuristic nature of the precision 
and time step control mechanism in SPICE and also 
shows how difficult it is to relate the parameters 
ABSTOL, RELTOL, TRTOL, CHGTOL and VNTOL 
(default value 1 pV) to the actual precision obtained in 
simulation. 

The error rate methods of determining step size and 
estimating local truncation error lead to more realistic, 
but still heuristic, control of precision for fast transients 
in simulated waveforms, but are conservative when wave- 
forms are more steady and cause, relatively, more time 
points in the simulation. 

As was mentioned in Section 2, spurious oscillations 
caused by numerical instability in high Q circuits can be 
difficult to distinguish from genuine instability of the 
circuit. Here, we discuss another problem involving 
ringing effects in high Q circuits not caused by instability 
but by lack of precision. The energy dissipated per sinus- 
oidal cycle in a high Q circuit is very small and, if less 
than the allowed local truncation error rate, genuine 
sinusoidal features in the response can be damped in 
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simulation. A circuit which has been used to examine this 
[16, 171 is shown in Fig. 8; the 1 F capacitor lightly 
couples two very high Q loops having marginally distinct 
normal frequencies. When initially the two 1 mF capa- 
citors are charged to 1 V, in opposite sense, an analytical 
solution for the time response of the voltage across the 
1 F capacitor is as indicated in Fig. 9, trace a. The initial 
energy in the circuit gradually dissipates by oscillation 
between the two halves of the circuit at the envelope 
(beat) frequency. The results of two simulations, with 
default parameters, using the trapezoidal rule and the 
second-order Gear method are shown in traces b and c, 
respectively. The trapezoidal rule result is imprecise (even 
the beat frequency is wrong!) and the Gear method has 
damped the oscillation almost to the point of non- 
existence. Adjustment of the parameters to tighten up the 
precision does, however, allow the Gear method, but not 
the trapezoidal rule, to achieve a result much closer to 
the analytical solution. In summary, for high Q circuits, 
the Gear method can numerically damp oscillating 
circuit behaviour, unless great care is taken with the 
choice of simulation parameters, while the trapezoidal 
rule can be imprecise because of a tendency towards 
instability in the presence of numerical noise. Generally, 
however, the trapezoidal rule is the preferred method for 
such circuits, because of the difficulty of defining suitable 
simulation parameters for the Gear method. 

5 

The Newton-Raphson process [19] is illustrated in Fig. 
I O  for a scalar function of a scalar variable. The required 

The Newton-Raphson method and the 
convergence domain 

ronge of convergence  

Fig. 10 Newton-Raphson process in one dimension 

solution is the intersection of the function curve with the 
x-axis. The process starts with an initial estimate do) of 
the solution. The intersection x(l) of the tangent to the 
curve at x(O) with the x-axis is a refined estimate of the 
solution. Repeating the procedure starting with x(') 
refines the solution further to x(') which is closer to the 
desired solution. This iterative procedure is continued 
until the tinal x-axis intersection dkf'), differs by less 
than some small specified amount from its predecessor 
x(&). The final iterate is then deemed to be sufficiently 
close to  the solution. Note that the process only con- 
verges when the initial estimate of the solution is within a 
range of convergence; in this case when x(O) is in the 
interval between the points of zero slope of F(x). The 
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recursive relationship determining successive iterates is 
X B + l )  = x(W - [F(x(W)] -lF(x(")) (16) 

as is evident from simple geometric inspection of Fig. 10 
or , alternatively, from the first two terms of the Taylor 
expansion of F(x),  about the value x ( ~ ) ,  equated to zero to 
define x( l+  ' ) .  Since [F' (X(~)) ]  - is the reciprocal of a gra- 
dient value, no equations have to be solved in this one- 
dimensional, scalar, case; it is now even more obvious 
why F ( x )  must not be zero. 

The vector Newton-Raphson method is illustrated in 
Fig. 11 for the two-dimensional case. The function F has 

T Fvo'ues 

2 

F2=0 - - - I  

Fig. 11 Solution of two-dimensional nonlinear equation 

components F ,  and F2 which are surfaces intersecting 
the F = 0 plane (defined by the x ,  and x2  axes) in curved 
lines as shown in the Figure. The intersection of these 
lines is the required solution. Given an estimate x("((p,, 
p 2 )  in Fig. 12) of the solution, a line through this point in 

(P,.P,) 

1 Fvalues 1 tongent plane lo Fzot (P, ,p2) 

Fig. 12 Newton-Raphson process in two dimensions 

the F = 0 plane, is drawn parallel to the F axis to inter- 
sect the two surfaces. Tangent planes to the surfaces at 
these intersection points then intersect the F = 0 plane in 
two straight lines. Finally, the intersection of the two 
lines yields the revised estimate x('+l) of the solution. The 
tangent planes depend on the partial derivatives of the 
components of F with respect to the components of x 
and, now using the vector form of Taylor's expansion, the 
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recursive relationship of eqn. 16 becomes 

[J(X'P')] - F(X@') (17) x ( P + l )  = x ( P )  - 

where J(x)  is the Jacobian of F(x)  (i.e. the multidimen- 
sional equivalent of the gradient F ( x )  in eqn. 16). Now 
J(x)  is a square matrix, of size equal to the dimension of 
x ,  and so the evaluation of x ( ~ + ' )  in eqn. 17 requires a 
numerically costly matrix inversion operation. It is pref- 
erable, therefore, to solve the alternative form 

(18) 
which is a linear equation set with coefficient matrix 
J(x(p)) and with the right-hand side of eqn. 18 as the con- 
stant vector. As mentioned earlier, the linear equation set 
is solved repeatedly, updating the coefficient matrix and 
constant vector each time, until x ( ~ ' + , )  has converged 
sufficiently. 

J(x(P+l))x(P+ 1 )  = J(x(P))x(P) - F(x(P)) 

In some simulators (not SPICE), the linear set 

J(x(P)) = -F(x(P)) (19) 
where Axcp+')  = x ( " + l )  - x(P), is used instead because it is 
believed that rounding errors, associated with limited 
precision of floating point number repesentation, arising 
from cancellation of terms on the right-hand side of the 
linear equation set, during its solution, are reduced. In 
this case, the equation set is repeatedly solved until both 
Ax@+ and F ( x ( ~ ) )  are suficiently small where the latter 
plays the role of an error vector since at the true solution 

As briefly explained earlier, the estimate of solution 
used to initiate the Newton-Raphson iterations must lie 
within a domain of convergence which includes the real 
solution [19]. Note that, in multidimensional space, this 
domain is associated with nonsingularity of J(x), which is 
equivalent to F ( x )  # 0 in the scalar case. Further, each 
refinement of the solution produced by the Newton- 
Raphson process must also lie in this domain. There is no 
computationally competitive way of determining this 
domain, and so heuristic methods to ensure convergence 
are used. Since the solution at the last time point is avail- 
able, cutting the time step, repeatedly if necessary, is a 
method of ensuring that the prediction at the new present 
time-step is within the convergence domain. Given the 
prediction, it (or one of its successive refinements) is 
assumed to be outside the domain when convergence is 
not achieved within a limited number of iterations (ITL4, 
default value 10). Then, the time step h is cut and the new 
prediction made. This is a secondary time control 
mechanism. 

6 DCsolution 

The problem of finding an initial DC solution is more 
difficult than for the transient simulation case, because no 
reasonable initial estimate of the DC solution is normally 
available. A totally quiescent circuit with all sources set 
to zero values has a known, trivial solution. Performing 
transient analysis while slowly ramping on the sources to 
their final values is an almost certain way of obtaining a 
DC solution, but is not implemented in SPICE explicitly. 
It can, however, be used by defining the sources appro- 
priately in the circuit description. 

The Newton-Raphson process, performed from zero- 
valued initial estimates, and with inductances shorted, 
capacitances open circuited, and sources applied, will 
mostly converge to the correct DC solution. Otherwise, a 
convergence failure is reported. This method is invoked 
in SPICE by means of the .OP command. 

F(x)  = 0. 
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More reliably [lS] in SPICE, a sufficiently large con- 
ductance (GMIN, default value 1 pS) connected between 
each node of a quiescent circuit and ground will ensure 
convergence of the Newton-Raphson process. The DC 
solution obtained can then be refined repeatedly with 
reducing conductance value (until it is finally zero) to 
yield the correct DC solution. This method is invoked 
automatically when DC convergence fails, and has 
proved to be the most effective method of obtaining a 
solution. Also in SPICE, the initial conductance (GMIN), 
unreduced, is used to shunt each circuit element diode 
permanently as an aid to convergence. Further, the limit 
on the number of Newton-Raphson iterations is higher 
(ITL1, default value 100) than for transient analysis 
(ITL4). Convergence failure occurs if this limit is 
exceeded at any step in the DC solution process. 

7 Convergence failure 

Apart from the failure modes of the last Section, near 
singularity of the coefficient matrix of the linear equation 
set can give rise to numerical instability [ll] in the solu- 
tion. This occurs when the magnitude of the pivot, in the 
equation reduction by Gaussian elimination, becomes 
too small (PIVTOL default value 1.Oe-12, PIVREL 
default value 10-3). The elimination pivot is rejected if 
its magnitude is less than the larger of PIVTOL and of 
PIVREL times the maximum magnitude element in the 
rest of the pivot column. This implies that partial 
(column) pivoting will be used if necessary which com- 
promises a sparse matrix method [19, 201 of solving the 
linear equation set normally used with consequential sig- 
nificant increase in simulation time. 

In a DC solution, failure to find a suitable pivot is 
akin to a convergence failure and probably implies an 
unrealistic circuit. In transient simulation, such a failure 
mostly arises as a time step too small situation following 
repeated cutting of the time step at a time point in an 
endeavour to achieve convergence of the Newton- 
Raphson process or, more probably, in an effort to meet 
the specified precision (TRTOL). Capacitive and induct- 
ive contributions to the coefficient matrix entries, involve 
terms having a time step h divisor which become large as 
h becomes smaller, causing the equation set to become ill 
conditioned. The convergence domain is thus related to h 
and, in extreme cases, resists attempts to predict into the 
domain by shrinking h. This form of convergence failure 
is usually indicative of a lack of realism in the circuit or 
in the modelling of its devices. 

8 

The precision problem caused by limited floating-point 
number precision arises when the value of the nonlinear 
function, in the Newton-Raphson scheme, changes very 
rapidly near its root (the solution). This can happen in 
circuits, for example, when very small changes of voltage 
in a device result in very large changes of current in the 
device. The effect manifests itself by a negligible (relative 
to the floating-point precision) change in the estimated 
solution values, between successive Newton-Raphson 
iterations, but wild, sign inversion, changes in the func- 
tion (vector component values). In Fig. 13, the true solu- 
tion lies in the unresolvable interval marked by the 
broken lines. The ends of this interval have the function 
values marked as error. The specified Newton-Raphson 

Floating point precision and the 
Newton-Raphson process 
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convergence precision, less than the magnitude of error, 
cannot be attained. It is thought (without much 
confidence) that SPICE incorrectly treats this situation as 

precision T fp 
I /  

I 
Fig. 13 Floating point precision limit in Newton-Raphson 

a convergence failure whereas the negligibly changing 
estimated solution should be accepted as the solution. In 
any event, the situation should only arise for somewhat 
extreme values of circuit components and/or device 
parameters. 

9 Conclusions 

We have presented a largely tutorial review of the prin- 
ciples of circuit level simulation, and have done so with 
the intention of identifying the underlying causes of prob- 
lems that arise in the practical use of circuit simulation. 
The authors believe that users of simulation programs 
need to be aware of how they work, so as to avoid the 
many difficulties that arise in what often should be 
straightforward simulations of what appear to be unpre- 
tentious circuits. It is the experience of the authors that it 
is frequently the oversimplified circuits that fail in simula- 
tion. It is also their experience that, quite often, appar- 
ently successful simulations provide results that are less 
precise than expected and, in some cases, even patently 
incorrect. An old adage in the building of simulators 
business is, ‘if it converges and gives them a result, they’ll 
be happy’; much of the aim of this paper is to say to 
users, ‘don’t believe it’. The message is that a user should 
first try to make sure that the results are correct (i.e. they 
have converged and are not significantly changed by 
resimulation at higher precision). The next step is to 
assess them for accuracy in the light of the simulation 
parameters used, and with knowledge of the limitations 
of the device models incorporated in the simulator. 

Principally, we have addressed and explained the 
problems of numerical instability, lack of precision in 
simulation, convergence failure and equation ill condi- 
tioning. One important area not covered is simulation 
problems arising from inappropriate device modelling. 
We omitted this topic because the generic principles of 
the topic warrent several papers, and also the many types 
of device modelled each warrent detailed consideration. 
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