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Several circuits  that  exhibit  chaotic  behavior are discussed. Evi- 
dence  for  such  a  behavior  is  given by  laboratory experiments, by 
computer simulations, and, where available, by rigorous  mathe- 
matical reasoning. 

I. INTRODUCTION 

The electrical engineer has been brought up  with linear 
circuit theory. This is his reference when  he  thinks about 
circuits. The  behavior of a nonlinear circuit is imagined as 
a distorted version of  the behavior of a linear circuit.-From 
this  point  of view, distortion  of signals, generation of har- 
monics,  etc.,  are  an obvious consequence of  the nonlinear 
characteristics of  the  circuit elements, and series  expan- 
sionsforthedeviationsfromlinearbehaviorisanaturaltool 
to study  these phenomena. 

Such  an approach is fully  justified  for weakly nonlinear 
circuits, but it is unable to describe the influence  of  strong 
nonlinearities.  Moreover, it is impossible to draw  the  line 
between weak  and strong  nonlinearities  just  by looking at 
the  circuit element characteristics.  The interaction  between 
different  circuit elements is just as important. 

The  most  spectacular manifestation of strong  nonlin- 
earity is the completely  irregular behavior of very simple 
circuits whose nonlinear elements  have perfectly regular 
characteristics.  This type of phenomenon  isgenerally called 
chaotic  behavior. We will give a more precise meaning to 
this  term in  the sequel. Most electrical engineers  are still 
unaware of  this possibility  and i ts occurrence may  have 
been misinterpreted in many cases  as some kind of external 
noise. 

The purpose of this paper is  to report on some of  the evi- 
dence  given for chaotic behavior of  electrical circuits. The 
material can be  divided  into  three categories: 

a) laboratory  experiments 
b) computer  simulations 
c) mathematical proofs. 

In science  and technology as a whole, the literature  report- 
ing  on chaotic phenomena is abundant.  Unfortunately, 
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mathematical proofs  for  the chaotic  nature of satisfactory 
model systems  are still rare.  The field  of electrical  circuits 
i s  no exception. 

In  our  opinion,  completely  convincing evidence for cha- 
otic behavior is only given by a), b), and  c) together. In fact, 
the chaotic behavior  observed in the laboratory could be 
caused by some uncontrollable noise and the computer 
simulations could be  strongly  distorted by  the accumula- 
tion  of round-off errors. Mathematical  proofs  cannot  be 
refuted as such, of course, but a case  can be made that a 
mathematical model  of a circuit  might fail to reproduce the 
behavior of  the physical circuit itself. 

The electrical engineer is  reluctant to  accept the possi- 
bilityofchaoticbehaviorbecauseitisyetanothereffectthat 
may  cause a malfunctioning  of  the  circuits  he designs.  To 
reassure him,  nonlinear circuit theory  should  provide  cri- 
teria  that  permit to single out  the intervals for  the design 
parameters, where chaotic behavior  may occur. Unfortu- 
nately, at present this is only  wishful  thinking. 

In  the absence of a deeper understanding  of ttie  origin 
of chaos, one has to concentrate on  the simplest circuits 
that show chaotic behavior. The minimum complexity is 
given by the Poincare-Bendixon theorem  which  roughly 
says that the solutions of a system of two autonomous dif- 
ferential  equations of first  order converge either to a point 
or to a closed curve [I]. This  excludes  any permanent  irreg- 
ular behavior. Hence, in order to study chaos, one has to 
consider  at  least either two nonautonomous  equations of  first 
order, or three  autonomous  equations of  first  order. Trans- 
lated into  circuit language, this means that the presence of 
at  least two reactive elements  (capacitor, inductor)  and a 
time-dependent source,  or, alternatively, the presence of 
at  least three reactive elements is required. This  paper con- 
centrates mainly on examples of  the first type. 

11. ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS 

When looking at the  time  evolution  of  the voltages  and 
currents in acircuit,  one  usuallydistinguishes  between the 
transient behavior, which disappears after a certain time 
and the  permanentfeatureswhich persist in time.The latter 
is referred to as the asymptotic  behavior of  the circuit, since 
permanent features of  the  time  evolution have to be 
extracted in  the  limit as time goes to  infinity. This does not 
mean that  the transients need an infinitely  long  time  to van- 
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ish, but  in  this way one can study the permenant  behavior 
without having to estimate the  transient decay time first. 

By chaotic  behavior  of  a circuit, we  mean  an irregular 
asymptotic  behavior.  At  this  point,  one  remark is appro- 
priate. There  are  examples of dynamic systems, where  the 
solutionsconvergetoanequilibriumpointafteralongtran- 
sient period whose  aspect is very irregular [2]. In computer 
simulations  and in laboratory  experiments such behavior 
would most  probably be interpreted as permanently cha- 
otic. This  again  shows the  need  for a rigorous  mathematical 
analysis. 

What is  regular  and  what is chaotic  asymptotic  behavior? 
Let us consider  a  linear circuit excited  by a sinusoidal  volt- 
age source. Each voltage and each current  of  the circuit, as 
afunction of time, is a sum of  terms  generated by the  initial 
charges  and  fluxes of  the capacitors and  inductors and a 
term generated by  the  time-dependent source.  The natural 
frequencies  of  the circuit determine  the  qualitative behav- 
ior  of  the  former  and  the  time  dependence  of  the source 
is reproduced bythe latter. If the  natural  frequencies siare 
in the  open  left  half  of  the  complex s-plane  (Res < 0) then 
the  former decay with exp ( - ts i )  and therefore  constitute 
the  transient  part of  the  time  evolution, whereas the latter 
is a  sinusoid and constitutes  the  asymptotic  behavior 
(Fig. 1). 

Fig. 1. Waveform of a  linear circuit driven  by  a  sinusoidal 
source. 

Instead of studying the waveforms, i.e., the voltages and 
currents as functions of time,  one  often  concentrates on  the 
orbits  in state  space.  The coordinates  of  the state  space  are 
the charges or voltages of  the  capacitors  and  the  fluxes  or 
the  currents  of the inductors. The time  evolution of the  cir- 
cuit is  represented, for each initial state, by  a  single  curve 
in state space, the  orbit. The time dependence is not visible 
anymore on  the  orbit, but  the  direction  of increasing time 
can  be indicated by  arrows. In Fig. 2, an orbit  belonging  to 
a  linear  circuit with  a capacitor C, an inductor L, resistors, 
and a  sinusoidal voltage  source is represented. The asymp 
totic  orbit is an ellipse, corresponding to the  sinusoidal 
steady  state of the  circuit.  Note  that  for  a  different  starting 
point  the  orbit  would  converge to the same ellipse. 

If a linear  circuit has constant sources in  addition to  the 

Fig. 2. Statespace orbit of a linear  circuit  driven  by  a si- 
nusoidal  source. 

sinusoidal source, the  time  evolution  of  the voltages and 
the currents are up  to a  constant as well. 

The convergence  of all waveforms to a  unique  sinusoidal 
steady  state, the same for all possible  initial states, is the 
most regular  asymptotic  behavior  one can  expect of  a cir- 
cuit  with  a sinusoidal source. If  a linear circuit has a  natural 
frequency in the  open right half of  the  complex s-plane, all 
solutions  diverge to  infinity,  with  the exception  of  those 
where  this  natural  frequency is not excited. Apart from  the 
limiting cases, where  the  rightmost  natural  frequencies are 
on the  imaginary axis, no  other  asymptotic  behavior can 
occur in linear circuits. 

The situation changes radicallywhen  nonlinear  elements 
are admitted in the  circuit.  Apart  from the"norma1"  behav- 
ior many qualitatively quite  different  time  evolutions are 
possible [3]. Normal  behavior means convergence of every 
voltage and current to a periodic  function  of time, which 
has the same period as the  generator  and is independent 
of  the  initial state. Figs. 1 and 2 give again a qualitative  pic- 
ture, except that the asymptotic  waveform is in general  not 
a  sinusoid  anymore  and  the  asymptotic orbit  not an ellipse. 

A  more  complicated  asymptotic  behavior  occurs  when 
the  circuit  admits several different  periodic  time  evolu- 
tions.  Their  periods may be  the same  as the  period  of  the 
source, or  multiples  thereof  (subharmonics). In general, 
some of  them are  stable, and  others are unstable. The volt- 
ages and  currents  converge to one of the stable periodic 
timeevolutions:  which  one  depends  on  the  initial state.  The 
unstable  periodic time evolutions are  reached asymptoti- 
callyonlyforexceptional  initial  states.Anyother  initial state, 
even  very close to  the exceptional ones, will converge 
to a  different  periodic steady  state.  For this reason, the 
unstable  periodic  time  evolutions  cannot be observed 
directly in laboratory experiments, and in computer sim- 
ulations special algorithms have to be used.  Note,  however, 
that  this kind of  instability is different  from  the  instability 
of  a linear circuit  mentioned above.  There is no divergence 
to infinity.  Note also  that,  apart from  the exceptional initial 
states, the  asymptotic  behavior of  the  currents  and voltages 
is the same for  sufficiently  close  initial states. 

In Fig. 3, an  example with three  periodic  orbits is given. 

F i g  3. Two  statespace  orbits  of  a  nonlinear circuit with 
three  periodic steady  states. 

Two of  them are  stable and  one is unstable. Furthermore, 
two general  orbits with  different asymptotic  behavior are 
represented. 

Another  possibility is the presence of an almost  periodic 
steady  state,  i.e., a steady  state containing  frequencies  that 
are not  rationally  related. In this case, the voltages and  cur- 
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Fi 4. Chaotic  state-space orbit. 

rentsofthecircuit looksomewhat  irregularfor large periods 
of time, but different  initial states still lead to the same 
asymptotic  functions  of  time.  Furthermore, these functions 
are nearly  periodic with large  periods. 

The asymptotic  behavior may  be worse still. It may  even 
fail to be  approximately  periodic. The orbits in state  space 
appear to  fill  out  whole regions (Fig. 4). Furthermore, close 
initial states lead to  time evolutions  that  become  more  and 
more  distant from each other. Thus all time evolutions are 
unstable. This is chaotic behavior. 

111. THE FORCED VAN DER POL OSCILLATOR 

The circuit  of Fig. 5 is  known as the  forced van der Pol 

f ( i )  = Rio( -i/io + (i/i0)3/3) (3.1) 

oscillator, if the  nonlinear  resistor has the  characteristic 

u 
Fig. 5. Forced van der Pol oscillator. 

where io and R are a  normalization  current  and  a  normal- 
ization resistance, respectively (Fig. 6). The solutions of  this 
circuit satisfy the second-order  differential  equation 

ed2x/d? + +(X) dx/dt + E X  = b COS (ut) (3.2) 

Fig. 6. Characteristic of the nonlinear resistor in the van 
der Pol oscillator. 

where  the following normalizations have  been  used: 
E = m, + = f’/R, t + K C t ,  u + u / r C ,  b = 
Eo/(&C R), and x = i/io. 

As early as 1945, Cartwright  and  Littlewood have discov- 
ered that (3.2) has,  at least for small E, “bad”  solutions [4]. 
The detailed  proofs are given in [SI. Levinson [6] provided 
a  simpler  proof  for  this  “singular  behavior” in 1949, by 
replacing the characteristic  of Fig. 6 with  the piecewise-lin- 
ear characteristic  of Fig. 7. 

The paper  of Levinson has deeply  influenced  the sub- 
sequent development of mathematical analysis. Indeed, it 
has beenthestarting  pointfor Smaletoconstruct  hisfamous 
“horseshoe”  example, which is one  of  the  prototypes  for 
chaotic  behavior m. Equipped with  modern mathematical 
theory  the origin of which was the paper of Smale, Levi [8] 
has reconsidered  the  forced van der Pol oscillator, with  a 
nonlinear  resistor  characteristic as in Fig. 6, but whose  cor- 
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In the two linear  regions with 1x1 2 1, the natural fre- 
quencies are - p  and -1lp and the solutions have the  form 

XU) = Al exp - ( t  - t,$p + A2 exp - ( t  - t0)p 

- (blu) cos (ut). (3.5) 

The first term vanishes  very rapidly  and the remaining two 
terms constitute  a  slowly decreasing exponential  that is 
modulated  by a cosine. 

The method  of Levinson  consists in considering  simul- 
taneously a  whole set of solutions. Each solution is iden- 
tified by  the  instant to at which it crosses the  boundary  x = 
-1 and  the  derivative dddt  at to. The family Fof solutions 
considered  by Levinson havetheir  crossing  pointson an  arc 
C in the shaded doman Z of  the (ob - x&plane, as shown 
in Fig. 9. For the exact definition  of Z and  the kind  of arc 
that is admitted we refer to [6]. 

Fig. 7. Piecewiselinear resistor  characteristic  considered 
by  Levinson. 

ners  have been  rounded  off  and  with  a  modified  periodic 
source. 

We sketch  here  the  arguments of Levinson.  The circuit 
of Fig. 5 with  the nonlinear  resistor  characteristic of Fig. 7 
is piecewise linear. This  means that  the space of  the  volt- 
ages and  currents is subdivided into  a  number of regions, 
three in our example, within  which  the  circuit behaves 
exactly like  a linear  circuit. The nonlinearity  of  the  overall 
circuit  originates from  the  switching  from  one  linear  cir- 
cuit to another  when  the voltages and  currents pass the 
boundary of  a linear  region. 

On thex-axis  the  linear  regions are the  intervals (-03, -I], 
[-I, +I], [+I, +=). In  the central  interval, the  function 
is the  constant -1, and in the  left  and  right  intervals it is 
the  constant +I. Consequently,  the  linear circuit corre- 
sponding to the  central  interval is unstable  and  the  linear 
circuits  corresponding to the  outside  intervals are  stable. 

The natural  frequencies  for  the  region 1x1 6 are 

p = (1 - J i - = $ ) / 2 €  = € (3.3) 

and llp. Thus the  solutions  of (3.2) in this  region are of  the 
form 

x(t) = B1 exp ( t  - t,Jp + B2 exp (t - t0)p 

+ (blo) cos (ut). (3.4) 

The first exponential  term in (3.4) grows very  fast  and thus 
the  solutions of (3.2) cross this  linear  region very rapidly 
(Fig. 81, unless the  coefficient B1 is  very  small which implies 
a  certain delay for  the  crossing  of  the  region. 

Fig. 8,. Two 

J 

Fig. 9. Family Fof solutions on the boundaries x = -1 and 
x = 1. 

The two solutions  of (3.2) that  correspond to the two end- ' 

points PI and P2 of  Care represented in Fig. 8 as functions 
of  time.  Note  that both grow to a  maximum  of  approxi- 
mately  x = 3 and  then decrease slowly. The solution  that 
crosses the central  region  first reenters  this region  shortly 
after ut = 2 n ~  whereas the  other has to wait  another period 
of the  modulating  cosine  and  reenters 1x1 < 1 shortly  after 
ut = (2n + 2 ) ~ .  The integer n depends on the value of p; 
the smaller is p, the  larger is n. 

Consider  now  the  whole  family F, not  only  the  endpoints 
of  the arc.  There must be a  point  &on  the C, whose solution 
touches  the  boundary  x = 1 shortly  after ut = 2nx, but that 
enters the central  region only after ut = (2n + 2 ) ~ .  It is 
shown in [6] that all solutions  corresponding to  the  portion 

I 

solutions of  (3.2)  (from [6]). 
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C- from Pl to P3 of the arc enter the central  region  shortly 
after w t  = 217%. Furthermore, if  for each solution we observe 
the  time tl when it crosses the  boundaryx = 1 and  the  deriv- 
ative dddt ,  and if we  represent it as a  point  in  the plane 
(ut, * x,), then  we get a  curve D- of  the same kind as C, in 
the  domain Z + (2n - 1)s. Similarly, the solutions  starting 
from  the arc C,, whose  endpoints are P3 and P2 on  x = -1 
cross x = +I on an  arc D, of  the same kind as C. 

To  sum  up, following  the solutions from  the boundary 
x = -1 until they re-enter the region 1x1 6 1 through  the 
boundaryx = +I amounts to stretching  the arc C, dividing 
it  into  two pieces, translating it along the  time axis by 
(2n - 1)s and (2n + I)A,  respectively, to end up  with  two 
arcs D, and D- that are similar to C (Fig. 9). If we continue 
to track  the  solutions until they  re-enter  the  central  region 
through  the  boundaryx = -1, the arcs D- and D+split  into 
four arcs €--, E - , ,  E ,  -, and E + , ,  all similar to C, that lie 
in the  domains Z + (4n - 2) A, Z + 4 n ~ ,  and Z + (417 + 2)x. 

Repeating this reasoning,  Levinson showed  that  for each 
sequence 6 k  of  numbers +I and -1, there is a  solution  of 
(3.2) that starts from  the arc C and whose successive entry 
times  of the region 1x1 Q 1 are  separated by  approximately 
the  quantity (2n + 6 k ) d w .  

For periodic sequences 6 k .  Levinson  proves that  there 
exists a corresponding  periodic  solution. Thus there are 
periodic  solutions  of all periods  that are linear  combina- 
tions  of (2n - 1)dw and (2n + 1)dw with natural  numbers 
as coefficients.  Equation (3.2) thus has  an infinityof  periodic 
solutions. They  are all unstable. 

However,  most of  the sequences 6 k  are not periodic,  not 
even asymptotically  periodic  and  the  corresponding  solu- 
tions  therefore have no  periodic  asymptotic  behavior. This, 
together with [5], is the  first  proof  for  irregular  asymptotic 
behavior of  the solutions of  ordinary  differential  equations. 

So far, the  mathematical  evidence  for  the  chaotic behav- 
ioroftheforcedvanderPoloscillatorwasgiven.Howabout 
computer  simulations  and  laboratory  experiments? Parker 
and  Chua reported in [9] on a large number  of  computer 
simulations on  the  piecewise-linear circuit whose  equa- 
tions  Levinson has studied. They varied  the parameters E 

and b of (3.2) and noted  the  asymptotic  behavior  for each 
pair  of parameters. Keeping E fixed at a small  value and vary- 
ing b, they found stable periodic  solutions  of all periods 
that are odd  multiples  of 2 ~ 1 ~ .  For a given value of b, either 
a  single stable subharmonic of  period (2n + I ) A  is  pres- 
ent, or  two of them coexist, with periods (2n - 1)r and 
(2n + 1)~. This is not  in  contradiction  with  the  work  of Lev- 
inson. In fact, studying  a set of  solutions  starting from an 
arc different  from C, he could prove  the existence of these 
subharmonics  for most  values of b. 

But where are the  chaotic  solutions? Parker and Chua 
could  not  find them  by  computer  simulation. The  analysis 
of Levi  shaws that in  thespaceof  initial  conditions they form 
a set of measure  zero,  i.e.,  an infinitely  thin set. Therefore, 
it is hopeless to  find  them  in laboratory experiments,  and 
special algorithms would have to be devised to compute 
them  numerically. However, it is not  difficult  to explain  their 
presence intuitively. In fact, they always occur  when  there 
are simultaneously two stable subharmonics  of  different 
periods. They  are located exactly between  the  domains of 
attraction of  the  two subharmonics.  Indeed,  for some time 
they  adopt  one  of  the  periods,  then the other,  then  they go 
back for some time  to  the  first period, etc.  The whole  pat- 
tern is perfectly  arbitrary. It i s  given  for each chaotic  solu- 
tion by the  aperiodic sequence 61;. 
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IV. OTHER FORCED OSCILLATORS 

It is very likely  that  chaotic  behavior has frequently  been 
observed in laboratory  experiments, but that these obser- 
vations  have been  misinterpreted as failures  of  the mea- 
suring  equipment, as parasitic noise,  etc. Reporting on such 
“unsuccessul” experiments does not add  much to the r e p  
utation  of  the  experimenter  and  thus it is unlikely to  find 
any records  of  them in the  literature. 

A remarkable  exception is the  paper  of van  der  Pol and 
van  der Mark [IO] that appeared as early as 1927. They stud- 
ied  the  neon  tube  oscillator of Fig. 10 that is excited by a 
sinusoidal and a  constant voltage  source.  The neon bulb 

E 

NEON 
BULB 

C 
E,Sinwt 

R 

Fig. 10. Forced  neon bulb  oscillator  (from Ill]). 

can  be modeled by a  linear  inductor in series with  a non- 
linear  resistor whose characteristic is given in Fig. 11. The 
purpose of this  circuit was to generate subharmonics. In 
order to observe the fundamental  frequency, van  der  Pol 
and  van  der Mark  simply  coupled a telephone receiver in 
some  way loosely to  the  circuit  and  listened to  it! 

0 50 60 70 80 

V(V) 

Fig. 11. Neon bulb characteristic  (from [ll]). 

When the  amplitude  of  the  sinusoidal source Eo is zero, 
the circuit oscillates at a  certain  frequency a,,. By varying 
the  capacitor C, van der Pol and van der  Mark have covered 
a  whole  frequency  interval  for q,. In the presence of  the 
sinusoidal source of frequency W ,  they have observed  the 
following phenomena. If wo was sufficiently  close to w, the 
circuit  oscillated atfrequencyo. Loweringwocontinuously, 
at a certain point  the synchronization  between  the oscil- 
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latorcircuitand  thesinusoidal sourcewas lost. Lateron,the 
oscillator  locked onto  the frequency w/2. Continuing  to 
lower w,,, the oscillator  lost  synchronization with  the sub- 
harmonic 1/2, as well, and, as soon as wo was sufficiently 
close to w/3, this  frequency  would be forced  onto  the  oscil- 
lator. This  process continued as the  neon bulb  circuit suc- 
cessively  passed through  thesubharmonics 1/2,1/3,1/4,etc. 

This behavior was what the  two authors were looking  for. 
However, between the frequency  where  the  synchroniz- 
ation with one  subharmonic was lost and the  frequency 
wheretheosciIlatorwaslockedtothenextfrequency,there 
was  an interval  where  they  observed  "irregular noise."  We 
know  now  that they have listened to chaos. 

Strangelyenough, the  forced van der Pol oscillator, where 
chaos is not observable, has led to extensive studies of cha- 
otic systems,  whereas the neon bulb oscillator has long been 
forgotten, even though chaos  has been  observed using  only 
primitive measuring  equipment. The experiments  of van 
der  Pol and van  der Mark have recently been taken up by 
Kennedy and Chua with more sophisticated measuring 
apparatus [Ill. They  have found  in  the  transition intervals 
a complicated succession  of subharmonic and chaotic 
behavior. 

Simllar phenomena have  been observed by Pei, Guo,  Wu, 
and Chua [12], and Chua,  Yao, and Yang [I31 in  other  forced 
negative resistanceoscillators, where  the  nonlinear resistor 
is implemented  by  two  bipolar transistors. We briefly pre- 
sent the results of [13], because they are particularly appeal- 
ing. The circuit is represented in Fig. 12, the  implementa- 
tion of the  nonlinear resistor in Fig. 13, and itscharacteristic 
in Fig. 14. 

Fw 12. Forced  negative  resistance  oscillator (from [13]). 

Fig. 13. Implementation ot the nonlinear resistor (from 
[13~. 

Fig. 14. Nonlinear resistor  characteristic (from [13]). 
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Instead of changing  the  frequency  of  the  unforced  oscil- 
lator, the  forcing  frequency fs is varied. In Fig. 15, the  ratio 
Pof fs and the  fundamental  frequency  of  the  forced  oscil- 
lator is represented as a function of fs. Thus P = m corre- 
sponds to a subharmonic l/m. The synchronization  inter- 

" 
2 o o o 4 o o o 6 o o o 8 o o o y K K ) o ~ w o o o  

f*(Hz) 

Fig. 15. Main sequence  of  subharmonics (from [13D. 

vals with P = 1,2, 3, etc., are clearly visible, as well as the 
gaps between these intervals  where the details are omitted. 
In Fig.  16, the gap between the P = 1 and P = 2 is enlarged. 

f,(Hz) 

Eg. 16. Secondary  sequence  of  subharmonics in  the first 
gap of Fig. 15 (from [13D. 

A secondary sequence of subharmonics with P = 3,4, 5, 
etc., fills  this gap partially. Only partially, because on  the 
one  hand  there are  again  gaps between these  secondary 
intervals and on  the  other hand, the left limit of the sec- 
ondary sequence of  subharmonics lies to  the  right of the 
right-hand  limit of the  primary interval P = 1. Indeed, for 
the frequencies in between, chaotic behavior is observed. 
In Fig.  17, the  orbit of the 1/4 subharmonic belonging  to  this 
secondary sequence is represented in  the (vs, v,)-plane, 
whereas in Fig.  18 the  orbit of the chaotic regime to  the left 
of the secondary sequence is shown. 

In  the  other gaps of the  primary sequence of synchre 
nization intervals the same phenomenon takes  place, 
except that P does not increase  by 1 in  the secondary 
sequence of gap n, but by  steps of n. 

Furthermore, in  the gaps of  the secondary  sequences 
there appears a third sequence of  subharmonics. In Fig.  19, 
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infinity, like staircases.  Except for  the  main sequence, the 
width  of  the steps  decreases to  zero.  The authors have  used 
the  term “devil‘s  staircase.”  Furthermore, there are gaps 
between the steps of  the staircases.  The  gaps of an  nth-order 
staircase is partially filled  with a staircase of order R + 1. 
The filling is only partial, because between the steps of this 
staircasethere  areagain  gaps and  beyond the staircase there 
is chaos.  Chua,  Yao, and Yang were  able to give simple laws 
for  the sequences of P-values for all staircases. 

This beautiful  pattern  of  finer staircases, one  contained 
in the other, i s  an  example of a geometric  object  that  looks 
similar at different scales.  Such objects  arecalled “fractals” 
and  have been advocated by  Mandelbrot [14]. 

Returning to the forced van der Pol oscillator, it is suf- 
ficient to  add a nonlinear term  in (3.2) to obtain observable 

Fig. 17. Orbit  of  the  subharmonic  1/4  belonging  to  the sec- chaotic behavior. The equation 
ondary  sequence  of Fig.  16 (from [13]). d2ddt2 + p(x2 - I) dddt + x3 = B COS ( v t )  (4.1) 

has been studied by Ueda,  Akamatsu,  Kawakami,  and  Hay- 
ashi [15],  [16]. It is known under the name of “Duffing-van 
der Pol equation.” 

Fig. 18. Orbit  of  the  chaotic  regime  beyond  the secondary 
sequence of Fig.  16 (from [13]). 

::i 
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Fig. 19. Third-order  sequence of subharmonics  in  the  first 
gap of the  secondary sequence of Fig. 16 (from [13]). 

thefirstgapofthefirstsecondarysequenceisen1arged.The 
subharmonics with P = 5 and P = 8 are clearly visible in  the 
gap bordered  by  the P = 2 and P = 3 subharmonics  of the 
secondary  sequence.  To climb  up  further  on  the  third 
sequence is beyond  the reach of the measuring apparatus. 

From their observations, Chua, Yao, and Yang conjec- 
tured  the  following general picture: There is a whole  hier- 
archy of sequences of subharmonics.  The corresponding 
sequences of P-values  increase by constant increments to 

V. Loss OF SYNCHRONIZATION 

The  appearance of chaos in the examples that have been 
discussed so far can be explained by a loss of synchroni- 
zation  between the  unforced oscillator  and the  forcing gen- 
erator. While this interpretation is very plausible, it should 
be  confirmed  by some  mathematical argument to become 
convincing. The work  of Levinson i s  a step in this direction. 
For the  other examples cited above, to  the knowledge of 
the author, nothing rigorous is available. Thete is another 
circuit, however, where precisely the mechanism of syn- 
chronization loss is studied. 

According to Tang,  Mees, and Chua [Iq, the  forced 
astable multivibrator  of Fig. 20 is  a good  model  for many 
oscillators that are frequency-stablized by a reference  sig- 
nal. It contains a piecewise-linear resistor with  the char- 
acteristic of Fig. 21 and it is excited  by the small  synchro- 
nization signal of Fig. 22. 

The circuit  of Fig. 20 has two impasse points [3] that are 
labeled Cand B in Fig. 21. Small  parasitic  elements will cause 
thetimeevolutiontojumpfrompointCtopointAandfrom 

c.= I 

Fig. 20. Forced astable multivibrator  (from [17]). 

Fig. 21. Piecewise-linear  resistor characteristic  (from [17]). 

Fig. 22. Synchronization signal (from [17]). 
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point 6 to  point D. Hence, in the absence of  the signal d(t), 
the  capacitor is charged  by the resistor during  the  time 
b/lo needed to pass from  point D to  point C, and then dis- 
charges onto  the resistor during  the  time bdIo needed to 
pass from  point A to  point B. The  presence of  the signal d(t) 
may trigger  the jump  from  Cto A before  the  capacitor  volt- 
age  has reached the  threshold b. This occurs if a  pulse 
arrives when  the  capacitor voltage is rising  between the val- 
ues b - c  and b. Otherwise,  the pukes have no effect. 

If the  period p of  the signal is slightly smaller than  the 
period 9 of the free-ru,nning  multivibrator, all pulses will 
trigger  the jump and  thus  the  forced  multivibrator is syn- 
chronized with 4 t h  This is the normal functioning of the 
frequency-stabiiized  oscillator (Fig. 23). However, if p is 

Fig. 23. Waveform of thesynchronizedoscillator (from [VI). 

slightly larger than 9, there is a  certain  number k of pulses 
which will  not trigger  a jump between two  triggering pulses 
(Fig. 24). Using the  notation  of Fig. 24, we  get 

t, +I = ( p  - 9)k - at,. (5.1) 

X + d b  

b .  I 

7 q ' 1  9 j 9  

L P ' P ' P ' P  

, I  

I 

Fig. 24. Waveform  of  the oscillator when  synchronization 
is  lost (from [17]). 

On  the  other hand, the  time for  the capacitor to be  charged 
from  zero to  the  triggering  threshold voltage 6 - c is 
(b - c)/I0. Therefore 

( p  - 9) (k  - 1) < at, + (b - c)//,, I ( p  - 9)k (5.2) 

which can be  rewritten a s  

at, + (b - c)/lo = ( p  - q)(k - 1) 
+ (at, + (b - c)/l,,) mod ( p  - 9). (5.3) 

Eliminating k between (5.1) and (5.3) we get 

t, + 1  = ( p  - 9) + (b - c)llo 
- (at, + (b - CY/,,) mod ( p  - 9). (5.4) 

This equation i s  of  the  form 

7, + 1  = f(7,) = 1 - (a7, + B) mod (1) (5.5) 

where 

7, = (t, - (b - c)/ld/(p - 9) (5.6) 

= (b - c)(l + a)/(p - @lo. (5.7) 

To  each time  evolution  of  the  circuit  there  corresponds 
the  sq'uence 7,, which is obtained  by  iterating  the  function 
f on the  initial value 70. The function f is represented in Fig. 
25. It iscomposedoftwocontinuous branches. Each branch 

Fig. 25. The function  defined in (5.5) (from [17]). 

corresponds to a  different  number k of  free-running oscil- 
lations  of  the  multivibrator  between two  triggering pulses. 
It is not  difficult  to analyze the  iterations  of f rigorously. 
The  results of this analysis  are as follows: 

In the cdsea < 1 all sequences 7, converge to a  fixed point 
of f. This corresponds to a stable  subharmonic  regime of 
the forced  oscillator. 

In the case  a > 1, no periodic sequence 7, can be stable. 
Furthermore, each  almost periodic sequence is in fact peri- 
odic. This  shows  that, apart from exceptional initial con- 
ditions,  the  asymptotic  behavior  of the  forced  oscillator is 
never periodic, nor almost  periodic. In terms of frequency 
content,  the  Fourier  transform of  the voltage and  current 
waveforms is never composed  uniquely of rays, it always 
has a  continuous  part. A typical  Fourier  transform is r e p  
resented in Fig. 26. 

Another  manifestation  of  thechaotic  behavior in thecase 
a > 1 is  the sensitive  dependence  on  initial  conditions. Since 

= -ad7,,sequenceswithverycloseinitial7,,'~diverge 
from each other  with exponential speed In a until  they are 
on different branches of f. This means that all sequences 
are unstable. Even microscopically close initial  conditions 
will lead eventuallyto  macroscopically  different sequences. 

To  sum up, the chaotic  nature  of  the time  evolution has 
been  proved  rigorously  for the  circuit of Fig. 20, when the 
reference signal has a  slightly  lower  frequency  than  the free- 
running astable multivibrator.  Both  the  irregular  nature  of 
the asymptotic  behavior  and the sensitive dependence on 
initial  conditions have been put  on  firm grounds. However, 
there is no discussion on the loss of  synchronization  when 
the  frequencyof the reference signal is too  high  with respect 
to the  free-running  frequency  of  the  multivibrator. 

Another  remark is appropriate. The circuit  of Fig. 20 has 
only  one  reactive  element,  the Capacitor.  Since a  nonau- 
tonomous  first-order  differential  equation can be  trans- 
formed  into a system of  two first-order  autonomous dif- 
ferential equations, thechaotic  nature  of its solutions seems 
to be in contradiction  with  the Poincare-Bendixon  theorem 
[I]. Remember,  however, thatthereweretwo impasse points 
and that  we have introduced  a  jump  rule  to be  able to con- 
tinue  the  time  evolution  from  the impasse points. In fact, 
this  procedure is justified  by  noting  that such discontin- 
uous waveforms  are obtained in the  limitwhen certain  par- 
asitic  reactances tend to zero.  Thus  we actually  consider  a 
circuit  with at  least two reactances, the  capacitor  and a par- 
asitic inductor,  and  the  Poincare-Bendixon  theorem does 
not apply anymore. 
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Fig. 26. Spectrum  of a typical  waveform  of v, (from (17). 

VI. R-L-DIODE CIRCUIT 

The circuit  of Fig. 27 does not  fall  into  the class of  forced 
oscillators. Indeed, if  the  voltage source is set to zero, all 
voltages and  currents  of the  circuit converge to zero, irre- 
spective of  the  initial  conditions. This property is a  con- 

Fig. 27. R-Ldiode circuit. 

sequence of  the passivity of  the  circuit elements. It can  be 
proved  by  using the stored energy as a  Liapunov function 
[3]. Therefore, it does not make  sense to talk  about syn- 
chronization in this case. 

Testa,  Perez, and Jeffries [I81 have observed  by  laboratory 
experiments  that  this circuit may  have a  complicated 
asymptotic  behavior. In Fig.  28, the  bifurcation  diagram is 
represented  that  they have directly  obtained on  the oscil- 
loscope.  This picture is to be  interpreted as follows. The 
horizontal axis represents the source amplitude Vo and the 
vertical axis the  diode  voltage v. For  each  value of Vo, the 
diode voltages v(ro + nT),  for n = N, N + 1, * are plotted, 

Fig. 28. Bifurcation  diagram  from  the  oscilloscope (from 
[ W .  

where T i s  the source period, ro a constant time between 
Oand T, and N a sufficiently large number such that  the  tran- 
sient part  of the  time  evolution has vanished at time NT. 
Hence,  Fig. 28 gives a  global picture of  the  asymptotic 
behavior of the R-L-diode circuit as a  function of source 
amplitude V,. 

A priori, on  the  vertical  line  corresponding to a fixed 
amplitude V,, a  huge  number  of  different  points  could  be 
present. This actually is the case for  certain  portions  of  the 
bifurcation diagram, but  not  for others.  Indeed,  for small 
V,, all points are  superposed, which means that the values 
of v(ro + nT) coincide  and  that v(r) is asymptotically  periodic 
of  period T. This is the"norma1" behavior  of thecircuit. The 
line  of  the  points v(ro + nT)  suddenly  bifurcates into  two 
lines at a certain  amplitude VI. This  means that  the voltages 
v(ro + nT)  oscillate  between two values  and that  the v(t) is 
asymptotically  periodic  of period 2T. In other words, the 
voltages  and currents of the  circuit  tend  to a subharmonic 
1/2 for these  values of Vo. There follows  a  bifurcation at V2 
to a  subharmonic 1/4, and a bifurcation at V3 to a subhar- 
monic 1/8.The resolution of the rneasuringapparatuscomes 
to a limit,  but by extrapolation  one expects progressively 
shQrter  intervals of V, to follow,  corresponding to the sub- 
harmonics 1/16,1/32,  etc. Indeed,  convergence  of the  bifur- 
cation  points on the Vo-axis to  a value V, is conjectured. 
Beyond this  amplitude, all voltages v(ro + nT)  are different 
which  corresponds to chaotic  behavior. Within  the region 
of chaos, "windows" with series of  subharmonics can  be 
observed.  The  largest window in.Fig. 28 is filled  with  the 
succession  of subharmonics 113,  1/6,  1/12, etc. 

It is interesting to compare this "route to chaos" with  the 
route  of Fig.  16. In Fig. 28, the  subharmonics  continue to 
double  their  period  until chaos is reached,  whereas in Fig. 
12 constant  increments are  added. 

If the circuit of Fig.  27 is to be simulated on a computer, 
a model has to be  chosen  for  the  diode. The  most popular 
model is a nonlinear  resistor with an exponential charac- 
teristic. It can  be shown [3] thatthe  resultingcircuit behaves 
"normally"foranysourceamplitudeVo.Consequently,this 
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diode  model  cannot  explain  the  bifurcation  diagram  of Fig. 
28. Even if  a linear  capacitor is added in parallel, no com- 
plicated dynamics  can occur [3]. A  nonlinear junction 
capacitor in parallel with  the nonlinear  resistor is essential 
for  generating  subharmonics and  chaos. 

In [19], Azzouz, Duhr,  and Hasler  have simulated  the cir- 
cuit of Fig. 27 by  using  the standard SPICE program. The 
built-in  diode model is composed  of an exponential  resistor 
and a capacitor that has a fractional  power  characteristic in 
the  blocked  mode  and an exponential  characteristic in  the 
conducting mode.  The results  of  the  simulation are r e p  
resented in a bifurcation  diagram (Fig. 29) similar t q  Fig. 
28, except that  the  inductor  currents i(t0 + nT),  n = 
IOOO, , 1029, are plotted instead  of  the  diode voltage. 
Note  the  good agreement between Figs. 28 and 29. 

I'mA' 

F i i  29. Bifurcation  diagram  computed by SPICE (from [19]). 

In order to accelerate the computations  and also with  the 
idea of an  easier theoretical  approach in mind, Azzouz, 
Duhr,  and Hasler  have drastically  simplified the  diode 
model in [20]. They  have  chosen a piecewise-linear char- 
acteristic  for both  the nonlinear  resistor (Fig. 30) and  the 
nonlinear  capacitor (Fig. 31). Both  characteristics have only 
two linear regions, with  the same breakpoint,  correspond- 
ing  to  the blocked and the  conducting state of  the  diode. 
The resulting  bifurcation  diagram (Fig. 32) is surprisingly 

Fi J. Piecewiselinear resistor characteristicforthediode 
(from [20]). 

![?" 
l u ,  

Fig. 31. Piecewise-linear capacitor characteristic for the 
diode (from [201). 

similar to Figs. 28 and 29. This  shows that  the  qualitative 
aspectsofthetimeevolution,andinparticularthepresence 
of chaos,  does not depend on the  particular form of  the 
element  characteristics. They  are robust phenomena. 

Is it possible to  further  simplify  the  circuit  without 
destroying i ts complicated  dynamic  behavior? It is. In [21], 
Matsumoto, Chua,  and  Tanaka  have eliminated  the  resistor 
in the  diode  model. Hence, their  only  nonlinear  element 
is a piecewise-linear  capacitor with  the characteristic  of Fig. 
31. The resulting  bifurcation  diagram (Fig. 33) does not  dif- 
fer  much from  theothers.This  still  confirmsthe  robustness 
of chaos. 

The route to chaos through  a  period  doubling sequence 
of subharmonics has been  studied rigorouslyin  thecontext 
of  functions  that map the  interval [ -I ,  +I ]  into itself and 
that have a  maximum at 0 [22], e.g., 

f ( x )  = 1 - px2. (6.1) 

A variant of (6.1) is widely  known  under  the name of  "logis- 
tic  equation."  Starting from an initial value x ,  the  asymp 
totic  properties of the  iterates of f, f ( x ) ,  f (  f ( x ) ) ,  f (  f (  f ( x ) ) ) ,  
etc.,  are studied as a  function  of p. Again, a bifurcation  dia- 
gram is obtained by plotting,  for each  value  of p, the nth 
iterates of f, for n = N, N + 1, * (Fig. 34). Apart from a 
fewdetails, thiscompletelydifferent dynamical system pro- 
duces the same bifurcation  diagram! This  fact  suggests the 
idea to  link  the R-L-diode circuit  in some  way to the  iterates 
of  functions on  the  interval, in order to  profit  from  the  rig- 
orousresultsof[22].Yoon,Song,Shin,andRa[23]usedsuch 
an approach, but it lacks rigor and thus does not lead to any 
new proofs. 

VII. OTHER  NONAUTONOMOUS CIRCUITS 

There  are other  nonautonomous  circuits with chaotic 
behavior, in particular  the  circuits  that are described  by  the 
Duffing equation [24]. In [25], Melnikov's  method is used 
to prove  the presence of  chaotic  behavior. This is a  per- 
turbation  method  and  thus presupposes that  certain 
parameters  are  small.  The same method has been  applied 
in [26] to a Josephson-junction  circuit. 

A  piecewise-linear circuit that  models  high-voltage 
equipment has been  studied in [27] and  chaotic  behavior 
has been obtained  by  computer  simulations. 

A  completely  different circuit  with chaotic  behavior has 
been  proposed by  Rodriguez-Vazquez,  Huertas, and  Chua 
[28]. It is a  switched-capacitor circuit that  directly  imple- 
ments the transformation (6.1). 

VIII. AUTONOMOUS CIRCUITS 

The present  paper  concentrates  mainly on nonauton- 
omous  circuits  and we just  mention a few examples of cha- 
otic  autonomous circuits. 

The  best known example is Chua's circuit,  represented 
in Fig. 35, with  the nonlinear  resistor  characteristic  of Fig. 
36 (cf. [29] and  references therein, [30]-[32]). In [29], it is  
shown that  this  circuit,  for  certain parameter  values, has a 
homoclinicorbit.  Byatheorem of Shilnikov[25],this  implies 
"horseshoe  chaos" in a  neighborhood  of these  parameter 
values. 
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F i i  32. Computed  bifurcation  diagram  of  the  piecewiselinear  R-Ldiode  circuit  (from 
[201). 

Earlier experimental  and  computer  simulation  evidence 
for chaos in a  third-order  autonomous  circuit has been  pre- 
sented by Freire,  Franquelo, and Aracil[33].  Finally, we  men- 
tion  the  circuit  of Saito [%] where it was possible to prove 
chaotic  behavior by elementary  methods. 

IX. CONCLUSION 

We have  discussed a  certain  number  of  circuits  whose 
time evolutions have a  chaotic  asymptotic  behavior, if the 

circuit parameters  are chosen in suitable  intervals. The 
"routestochaos"through sequencesof subharmonics have 
also been presented. In  the rare cases, where  rigorous 
mathematical  arguments assure the presence of chaos, we 
have given an outline of  them. 

We  are convinced  that  the  engineer at large will even- 
tually  become aware of  the fact  that  chaotic  behavior may 
occur in electrical  circuits. As a consequence,  many  new 
examples will  pop  up where chaos  has been  observed in 
real operating systems. Then  there will be an urgent  need 
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Fig. 35. Chua’s circuit. 

Fig. 36. Nonlinear  resistor  characteristic  of Chua’s circuit. 

for a coherent  theory  that allows to foresee and  eliminate 
this  kind of malfunctioning. 
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