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Dynamic Nonlinear Networks: State-of-the-Art 
LEON 0. CHUA, FELLOW, IEEE 

A~s~vzcz-TI~s paper sm-veys the state-of-the-art of the quulitative 
aspeers of nonlinear RLC networks. The class of networks being surveyed 
may contain m&he& and m&i-pott RESISTORS, INDUCTORS, 
AND CAPACITORS, as well as dc and time-dependent voltage and 
current soorces. 

The concepts of hymsse polrrs and ho/ sdwbilily are introduced and 
sltowu to be of fundamental imporhmce in model@ a physical network. 
Simple criteria are given which guarautee the exhtence of a global state 
equation. 

General theorems are presented for identifying or testing whether a 
dynamic nonlinear network possesses one or more of the following bush2 
qualitative properlies: 

1. No finit&forward-esape.tlme solutions. 
2. L.ocal asymptotic stabiity of equilibrium points and olmrwbiity of 
Operating Pi-. 
3. Eventual uniform&oundednes of solutions. 
4. Cmpkte stability and global asymptotic stability. 
5. Existence of a dc or periodic steady-state solotion. 
6. Unique steady-state respoose and spectrom conservation. 

Thehypothesesofmostofthesetheore.msarecouchedIngMfh-aod 
&w,it-rkwetic terms so they can be easily cheded, often by kvpeczh 

Spedalefforgaremsdetostatetheconceptsandresultsioaformthat 
can be easily mukr&od and used by the nonspech/is~. Moreover, each 
concept and property Is profusely illustrate4l with carefolly conceived 
examples, and intuitive explanations 90 as to make this paper both 
motIvatIng and somewhat se&contained. Extensive references are P 
vided to facilitate reseal&em lntereskd in conducting future research on 
the many unsolved problems in dynamic nonhear networks. 

I. INTRODUCTION 

M OST MODERN electronic devices [ l]-[6] and elec- 
trical power system components [7]-[ lo] are nonlin- 

ear. In this paper, we assume that they are modeled using 
a basic set of circuit elements consisting of 2-terminal, 
multi-terminal, and multi-port RESISTORS, INDUC- 
TORS, and CAPACITORS,’ as well as independent volt- 
age and current sources. 

A network GJL made of an arbitrary interconnection of 
these basic circuit elements is called a dynamic lumped 
RLC network. For simplicity, we assume % contains only 
a finite number of elements and that all resistors, induc- 
tors, and capacitors are time-invariant. 
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‘An (n + I)-terminal or n-port circuit element N with terminal (or port) 
vector o, current i, charge q, and flux + is said to be an (n + 1)-terminal 
(or n-port) RESISTOR, INDUCTOR, or CAPACITOR if N is described 
by a constitutive relation fR(v, i; t)=O, f=(c), i; t)=O, or fc<q, v; t)=O, 
respectively [ 111. An element is said to be time-invariant if t IS explicitly 
absent in the element’s constitutive relation. 

Every properly modeled dynamic lumped network has a 
well-defined state equation 

i=f( x, r), t> t, (l-1) 

for all x ~9, where 6iJ denotes a nonempty subset of the 
n-dimensional Euclidean space R”, and where f( X, t) is a 
continuous function of x in Q. Assuming that (1.1) has a 
unique solution 

.x=i(t), t> t, (14 

with an initial state x(to) L x0 E$?, efficient numerical 
methods are available for computing n(t) [12]. 

Unlike linear networks, however, computing the solu- 
tion of (1.1) corresponding to some initial state does not 
constitute a meaningful analysis in the nonlinear case. 
This is because a given nonlinear network can exhibit 
many quulitatiuely different solutions-some could be ex- 
tremely complex [13]- [14] and bizarre [ 16]- [ 18]- 
depending only on the choice of the initial state. 

For example, under fault situations, power systems nor- 
mally operating in 60-Hz sinusoidal regime have been 
observed to switch to an abnormally high-current non- 
sinusoidal regime [lo], [ 191. If not quenched quickly, this 
abnormal operating mode could cause serious damage to 
the system-the expensive power transformer is often the 
first .to bum-out. 

Other examples abound in electronic circuits especially 
at microwave frequencies where undesirable subharmonic 
oscillations are frequently observed and pose a perennial 
challenge to the microwave circuit designer for quenching, 
if not suppressing, such undesirable operating modes. 
Likewise, in computer networks, noise and transient dis- 
turbances could cause a memory circuit to switch inad- 
vertently to a different equilibrium point, thereby translat- 
ing the shift into an incorrect information signal. 

Hence, unless one carries out a qualitative analysis first 
to determine the different operating modes and regimes in 
a network GJZ one cannot evaluate, let alone predict, the 
performance of % by numerical simulation. 

The objective of this paper is to present a survey of the 
state-of-the-art concerning the qualitative behavior of &- 
namic nonlinear networks.’ Since an extensive recent survey 
of this subject (including precise statements of the main 
results and a comprehensive bibliography) is available in 

zThis paper represents an expanded version of a recent presentation at 
an NSF Worhdzop on Nonlinear Circuits and System held in Houston, 
TX, Jan. 4-5, 1980. 
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[20], the emphasis of this paper will be on interpreting the 
circuit-theoretic meanings of the many results surveyed in 
[20] and assessing their significance. 

Although the proofs of many of the results to be pre- 
sented in this survey require rather sophisticated modem 
mathematical tools, special attempts are made to state 

v~+y--j~R 

these results in simple and intuitively plausible circuit- 

“;- 9; 

theoretic terms so that they can be understood and used Fig. 1. A 2-element RC network TL (Example 1.). 

by the nonspecialist. Consequently, stronger than neces- 
sary hypotheses will usually be invoked. Special attention 
will be given to the interpretation of these hypotheses so APPENDIX 

that the reader will appreciate why they are needed. Some A. 1. Proof of Theorem 2. 

of these hypotheses will be couched in graph-theoretic A.2. Errata for References [31], [2513 

terms so that they can be checked by inspection. Whenever REFERENCES 

possible, all hypotheses will be expressed at the “circuit II. A GLIMPSE AT SOME MOTIVATING EXAMPLES 
element” level so that often there will be no need to write 
down any equation explicitly. We strongly believe that Tlhis section is mainly tutorial. It contains a large num- 

results of this nature are most useful in practice. ber of simple but nontrivial-some rather subtle- 

The following is a table of contents of the topics pre- exarnples which show why certain “good” or “bad” things 

sented in this paper: can occur in nonlinear networks. They also provide a 

INTRODUCTION lead-in motivation for the subsequent sections. I. 
II. 

III. 

IV. 

V. 

VI. 

VII. 

VIII. 

IX. 

X. 

A GLIMPSE AT SOME MOTIVATING EXAMPLES 
Examples Concerning State Equation For- 

2.1. ExampIes Concerning State Equation Formulation 

mulation Example I. Consider the nonlinear RC network 92 

Examples Concerning Existence and shown in Fig. l(a). Let the element constitutive relations 

Uniaueness of Solutions be described as follows: 

2.1. 

2.2. 

2.3. 

2.4. 

2.5. 

I  

Examples Concerning Equilibrium Points 
and Operating Points 

Resistor R: i, =h(u,), 

Examples Concerning Boundedness of Solu- 
Capacitor C: u, =g( qc), 

tions If we choose the capacitor charge 
Examples Concerning Steady-State Solutions the state equation is given by 

U,ElR (2.1) 

qcER* (2.2) 
qc as state variable, 

GLOBAL STATE EQUATION FORMULATION AND Lo- 
CAL SOLVABILITY 42 = --h(dqc)) +f(qcL 4cER- (2.3) 
3.1. Two Common Formulations 
3.2. On the Existence of the Resistor Function 
3.3. On the Existence of a Global State Equation 
3.4. On Local Solvability 
QUALITATIVE PROPERTY 1: No FINITE-FORWARD- 
ESCAPE-TIME SOLUTIONS 
4.1. Basic Circuit-Theoretic Properties 
4.2. Local Existence and Uniqueness of Solutions 
4.3. No Finite-Forward-Escape-Time Solutions 
QUALITATIVE PROPERTY 2: LOCAL ASYMPTOTIC 
STABILI-R OF EQUILIBRIUM POINTS AND OBSERVA- 
BILITY OF OPERATING POINTS 
5.1. Mathematical Characterization of Equi - 

Now suppose g( -) in (2.2) is bijectiue so that its inverse 

4c =a,(u,)~ U,ER (2.4) 

exists. Then applying KCL and the chain rule, we obtain 

C(u,)+ = -h(q), u, E Iw (2.5) 

where C(u,) A d&(uc)/duc is the incremental capaci- 
tance. Assuming that C(u,)#O for all uc, then (2.5) can 
be rewritten as 

librium Points 
5.2. Circuit-Theoretic Characterization of Equi- 

librium Points 

tic= -C-‘(u,)h(u,) i f(uc), uc E R. (2.6) 

H[ence, (2.6) is also a well-defined state equation with 
the capacitor uoItage u, as the state variable, provided 

QUALITATIVE PROPERTY 3: EVENTUAL UNIFORM 
BOUNDEDNESS OF SOLUTIONS 
QUALITATIVE PROPERTY 4: COMPLETE STABILITY 
AND GLOBAL ASYMPTOTIC STABILITY OF AIJTONO- 
MOUSNETWORKS 
QUALITATIVE PROPERTY 5: EXISTENCE OF A DC 
OR PERIODIC STEADY-STATE SOLUTION 
QUALITATIW PROPERTY 6: UNIQUE STEADY-STATE 
RESPONSE AND SPECTRUM CONSERVATION 
CONCLUDING REMARKS 

C( uc) # 0 is defined for all uc E Iw . (2.7) 

To illustrate the importance of (2.7), let R be a 1-Q 
linear resistor and let C be described by [21]: 

UC =dqc) 2 (4c - v3+ 1 (2.8) 

3Since much of this survey is based on results presented in 1251, [31], 
we take this opportunity to include a brief errata. 
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The above example also demonstrates that even if a 
capacitor {resp., inductor} constitutive relation is bijec- 
tive, it would still be preferable to choose the capacitor 
charge {resp., inductor flux} as a state variable. Such a 
choice not only obviates the need for checking additional 
conditions (such as (2.7)), but it offers certain additional 
numerical advantages [12, pp. 43-45, 431-4321 over the 

Fig. 2. The qc+ curve for charge-controlled capacitor C of Example 
2. Here qc is a kz obal coordinate for this curve. The capacitor voltage 

capacitor voltage {resp:, inductor current}. 
o does not qualify as a global coordinate. Nor does it qualify as a 
‘&Cal” coordinate at Q, or Q,. 

Example 2. Let R in Fig. 2(a) be a l-9 linear resistor 
and let C be a charge-controlled capacitor4 described by 

as shown in Fig. l(b). Then (2.3) assumes the form vc=~c(4c) A ;&3q5+8q,, qc E !R (2.16) 

&=-(4c-V-- ~f(q& qc E R. (2.9) as shown in Fig. 2(b). Then state equation (2.3) reduces to 

Note that g(*) in (2.8) is bijective and has a continuous 
inverse function 

&= - 
[ 

$7:--3qf+8q, sft~c), 1 4c Ena- 
~c=&(z?c)=1+(oc-1)“3. (2.10) 

(2.17) 

Its incremental capacitance is given by Note that C is not voltage-controlled. In particular, its 

c(v&~(v~-1)-2~3+0, 
incremental capacitance C(v,) is multi-valued over the 

for all vc ER. (2.11) interval [5f,6f]. If we choose vc as state variable as in 
(2.6), -then the state equation. is defined only over 2 dis- 

Substituting (2.11) into (2.6) we obtain joint intervals (- co, 5;) and (6f, cc): 

tic=-3(vc-1)2’3vc~:(vc.), v, ER. (2.12) 2 
- m<vc<5f and65<vc<cc. 

Note that f(vc) is a continuously differentiable function 
which vanishes at v, = 1. Hence v, = 1 is a well-defined 
equilibrium point of (2.12) [22]. 

Observe, however, that v, =vR = 1 implies i, = -i, = 
- 1 # 0. Hence we have arrived at a paradoxical situation 
where the capacitor current is not zero at equilibrium! 

To resolve this paradox, note that C(vc) in (2.11) is 
undefined at v, = 1; namely, C( 1) = cc. Consequently, (2.7) 
is violated. It follows, therefore, that the state equation 
which correctly describes ‘-X is not (2.12) but rather (2.13): 

tic = -3(vc - 1)2’3vc A f(q), V,ER, v,#l. 

(2.13) 

The almost trivial distinction between (2.12) and (2.13) 
turns out to be crucially important in this example. In- 
deed, (2.12) can be interpreted as the state equation de- 
scribing an infinite number of distinct networks (all shar- 
ing the same topology as Fig. 1) all of which differ from 
that defined by (2.8); namely; redefine R and C in Fig. 
l(a) as follows: 

Resistor: i, = 3C,( vR - 1)2’3v, (2.14) 

Capacitor : qc = C,v, (2.15) 

where C, is any real number. Observe that at the 
equilibrium point vc =vR = 1, (2.14) implies i, = -i, =O, 
as it should. 

This example shows that while each network has a 
unique state equation (if it exists) with respect to a given 
state variable, each state equation represents infinitely 
many distinct networks. 

(2.18) 

Since & = - vc implies & > 0 whenever vc < 0, and 
& <0 whenever vc >O, it follows that all solutions must 
tend toward the equilibrium point qc =O, as depicted by 
the “dynamic route” in Fig. 2(b) [22]. Hence, % has a 
well-defined solution q;(t) satisfying (2.17), in spite of the 
fact that the state equation (2.18) does not exist globally 
(i.e., in. R). 

Since vc( t) = Go( qc( t)) is well defined, one might argue 
that (2.18) is also well defined so long as one picks the 
appropriate branch of the curve when numerically solving 
the state equation: the initial point specifies which branch 
applies at any time. This is in fact the way circuit simula- 
tion programs are designed, where the computation is 
carried out in a small neighborhood of an initial point [12]. 
Mathematically, V~ is called a local coordinate about the 
initial point +-to). This argument is valid at all points in 
the curve in Fig. 2 except at Q, and Q,. Note that given 
any neighborhood of either point, no matter how small, 
the qc -vc curve remains a multivalued function of u,. 
This difficulty is reflected in (2.18) in the value of C(v,) 
which tends to co at precisely these 2 points. We conclude 
that v, does not qualify even as a local coordinate at Q, 
and Q,. 

Example 3. Let R in Fig. 3(a) be a 1-Q linear resistor 
and let C be a voltage-controlled capacitor described by the 

4An (n+ I)-termin al (or n-port) element described by y=f(x), XE R” 
is said to be x-controlled iff f is a continuous function for all x E W”. In 
other words, “x-controlled” always means “x” is the independent varia- 
ble of a function defined in the entire space R”. 
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Fig. 3. The qc-0 curve for voltage-controlled capacitor C of Example 
3. Here o, is a a obal coordinate for this curve. The capacitor charge 
qc does not qualify as a global coordinate. Nor does it qualify as a 
local coordinate at Q, or Qs. 

“dual” of (2.16): 

qc =&(uc) L ;u; -3~: +8vc, v, E R (2.19) 

as shown in Fig. 3(b). Note that qc does not qualify as a 
global coordinate for the qc-vc curve, but u, does. In 
fact, qc does not even qualify as a local coordinate at Q, 
and Q, in Fig. 3(b). Hence, the state equation (2.3) does 
not exist globally. 

Since v, qualifies as a global coordinate for the qc-vc 
curve, it is natural to write the state equation in the form 
of (2.6). Note however that since C(v,) =0 at Q, and Q,, 
the state equation 

VC v, = - 
$-6vc+8 

A f&L vc #2,4 (2.20) 

is undefined at vc = 2 and vc = 4. 
Unlike Fig. 2, however, the dynamic route (note that 

& <0 for all points with v, >0 is qualitatively quite 
different in Fig. 3. Here, the solution starting from a point 
on either side near Q, diverges from it {resp. Q2 converges 
toward it}. One might dismiss this observation as no more 
than a simple example of an unstable equilibrium point of 
(2.19). Observe, however, that Q, and Q, are not equi- 
librium points since tie does not tend to zero as vc+2 or 
4. In fact, tic+co as v,+4 and tic+-00 as uc+2! This 
means that the solution starting at any point near Q, at 
t = 0 would arrive at Q2 at some finite time T> 0. Like- 
wise, the solution starting at any point near Q, at t =0 
would return to Q, at some finite time T<O. Note that 
upon reaching either Q2 or Q, in Fig. 3(b), the solution 
cannot be continued in forward or backward time, respec- 

, tively. We call Q, and Q2 impassepoints for this reason. 
One could object to choosing either Q, or Q, as initial 

conditions on the ground that f(vc) in (2.20) is undefined 
at these points. However, the issue here is that starting in 
a small neighborhood of Q,, any computer simulation 
would get us to Q2 in finite time T, after which the 
computer will be unable to continue the integration routine 
since the solution ceases to exist.‘j Since all physical net- 

‘We call a point x* of an autonomous system x=f(x) an impasse 
point, if the solution ceases to exist after it reaches X* infinite forward or 
backward time. A more precise definition is given in Definition 3 of 
Section 3.4. 

6No existing circuit simulation program is capable of detecting this 
nonphysical situation. Clearly, whatever solution it generates after t= T 
is plain garbage, which could be highly misleading to the unsuspecting 
user. 

Fig. 4.. The i, -o 
Here i, is a glo =t 

curve for current-controlled resistor R of Exawqde 4. 
al coordinate for this curve. The resistor voltage II 

does not quality as a global coordinate. Nor does it qualify as a locifi 
coordinate at Qt or Qs. 

+ i 
‘1 + ‘Cl 

2 - Port 

‘Q t ‘2 

VI 1n “Cl Copac1tor “c2 1n “2 I t 
I I- 

Fig. 5. Network for Example 5. 

works must have solution for all times t > t,, any network 
which exhibits such impasse points is nonphysical and 
should be remodeled. 

Example 4. Let C in Fig. 4(a) be a I-F linear capacitor 
and let R be a current-controlled resistor described by 

A 1 
v, =CR(iR) = 7’: -3ii +8i,, i, E Iw (2.21) 

as shown in Fig. 4(b). Since G(iR) is not bijective, h(vR) in 
(2.1) is multivalued over the interval 55 < vR < 6:. Since 
both (2.3) and (2.6) are expressed in terms of h(e), neither 
state equation exists globally in this case. Note that this 
situa.tion differs from those of Examples 2 and 3 where at 
least one state equation exists everywhere except for some 
isolated points. 

To give a physical interpretation of this situation, ob- 
serve that tiR = tic = i, = - i, implies zjR > 0 whenever i, < 
0, and d, <0 whenever i, > 0. This gives rise to the 
dynamic route shown in Fig. 4(b). Again, we reach an 
impasse situation when the solution reaches Q, in some 
“finite” forward time T< co, or Q, in some “finite” back- 
ward time T> -co. (Note that Q, and Q, are not 
equilibrium points of either state equation (2.3) or (2.6), 
even if they are defined at Q, and Q,.) 

Hence, Q, and Q, are impasse points and we conclude 
that Fig. 4(a) represents a nonphysical circuit. To remodel 
this circuit, we need only insert a small series linear 
inductance representing the line inductance. It is easy to 
see that the resulting second-order circuit has a state 
equation defined globally in R2 [22]. 

To uncover the source of the difficulty in Fig. 4(b), note 
that since qc = v, = vR, neither qc nor vc qualifies as a 
global coordinate, or as a local coordinate at Q, and Q,. 

Example 5. Consider the network shown in Fig. 5, 
where the two-port capacitor C is described by 

qc, = a,( vC,, uc,) 2 e’cl cos vCDc, 

qc, = a,( vc,, vc,) g e”cl sin uo, 

(2.22a) 

(2.22b) 
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‘C ‘R 
+ + 

“c c 

-a- 

R “R 

Fig. 6. A network having no solution for t > ~0’. However, the solution 
exists and is bounded for 0 < t < 0:. 

where uc E R2. Note that qc =@(uc) is not bijective be- 
cause there exist at least 2 distinct points, (vc,, uc-)=(O,O) 
and (0,20), which map into the same point (qc,, qc2)= 
(LO). In other words, C is voltage-controlled but not 
charge-controlled- the same situation encountered earlier 
in Fig. 3(b) of Example 3. Since qc does not qualify as a 
global coordinate, the state equation in terms of qc does 
not exist globally in R2. In Example 3, we have seen that 
this situation led to the presence of impasse points so that 
the state equation (2.20) (in terms of vc) is undefined at 
these points. 

To show that this nonphysical situation does not arise in 
this example-in spite of the other striking similarities- 
note that the incremental capacitance matrix C(u,) associ- 
ated with (2.22) is nonsingular for all u, E R2. Hence, using 
capacitor voltages as state variables, the following state 
equation for Fig. 5 exists for all uc E R2. 

vc, I:1 [ 
-1 

euCl cos vc2 - e% sin uc2 
=- 

2.‘c, eucI sin v C2 I [ 

UC, 
e”Cl~~~ uc2 uc2 l- 

(2.23) 

The subtle difference between Examples 3 and 5 is that 
whereas q does not qualify as a local coordinate for the 
qC-uC curve defined by (2.19) for some qc E aB, qc does 
qualify as a local coordinate for (2.22) for all qc E lb!‘. To 
show this, note that since det C(uc)=e2% #O, the func- 
tion qc =6(vc) in (2.22) is locally one-to-one.’ Hence, for 
any point vz E R2, there is an open neighborhood N(v,Z) 
about uz such that qc defines a single-valued function for 
all qc EN($). 

2.2. Examples Concerning Existence and Uniqueness of 
Solutions 

Example 6. Let R in Fig. 6(a) be a 1-Q linear resistor 
and let C be described by qC = f u& as shown in Fig. 6(b). 
The state equation is 

1 
uc=-2v,’ 

UC #O. (2.24) 

The solution with initial capacitor voltage v,(O) = v, exists 
analytically: 

u&,=~~, t>o. (2.25) 

Note that this solution does not exist for t > ~0’ (see Fig. 
6(c). In fact, if we choose u,(O) = 0, then no solution exists 

‘Note that qc =<(uc) is not locally one-to-one at Q, and Q, in 
Exanpk 3. 

Fig. 7. A network with infiitely many solutions all of which having 
the same initial voltage o&O) = 3. 

Fig. 8. A nonphysical network exhibiting a finite-forward-escape-time 
solution. 

at all. This should not be surprising because uc =0 is in 
fact an impasse point. Note that both oc and qc qualify as 
a global and a local coordinate in this case, but u,(q,) is 
not differentiable at qC =O. 

ExampIe 7. Let C in Fig. 7(a) be a 1-F linear capacitor 
and let R be described by the i,-v, curve shown in Fig. 
7(b). Let this curve be represented analytically in a small 
neighborhood of uR = 3 as follows [23]: 

lR = - $(u, -3)‘/‘+2, 

‘The state equation is 

2<v, <4. (2.26) 

f& = ;(uc -3)1/3-2+1,(t), 2 < vc < 4. (2.27) 

The solution with initial capacitor voltage u,(O)=3 and 
I,( t ) = 2 exists analytically: 

f&(t) =3, O<t<T 

=3+(t-T)3’2, T<t< T+l (2.28) 

where T is an arbitrary real number. Hence, this network 
has infinite& many solutions. Note that i^,(o,) is not 
differentiable at vR = 3. 

Example 8. Let C in Fig. 8(a) be a 1-F linear capacitor 
and let R be described by the i,-u, curve shown in Fig. 
8(b). The state equation is 

tic =I$, v, > 0 
=o, u, <o. (2.29a) 

The solution with initial voltage u,(O)= 1 exists analyti- 
cally: 

UC(t)= i&Y t>o. (2.29b) 

Note from Fig. 8(c) that this solution does not exist at 
t = 1: u=(t) blows up at t = 1. Such a network is said to 
exhibit a finite-forward-escape time and is clearly nonphysi- 
cal. 
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'C + :" 

"C 

4 -T C:IF R vR 

Fig. 9. A network exhibiting a finite-backward-escape-time solution. 

Fig. 10. A Qnamic network and its associated resistiw network ob- 
tained by open-circuiting the capacitor and short-circuiting the induc- 
tor. 

Example 9. Let C in Fig. 9(a) be a 1-F linear capacitor 
and let R be a p-n junction diode described by the i, -uR 
curve shown in Fig. 9(b). The state equation is 

tic=-l,[ek”C-11. (2.30) 

The solution with initial voltage u,(O)= 1 exists an&i- 
tally : 

(2.31a) 

where 

f(t) k (kl,)t+ln. ( $-p ). Wlb) 

Note from Fig. 9(c) that this solution does not exist at 

t=T 2 -(l/klo)ln[l/l -eek]. Such a network is said to 
exhibit a finite-backward-escape time. 

2.3 Examples Concerning Equilibrium Points and Operat- 
ing Points 

Example IO. Choosing uc and i, as state variables, the 
state equation for the typical tunnel-diode network shown 
in Fig. 10(a) is given by 

u, = - $ [ i, -g(uc)] A fc(uc, iL) (2.324 

IL = - i[e-Ri, -q] k fL(uc, iL). (2.32b) 

Any solution (us, iz) of the algebraic equation obtained by 
setting the right-hand side of (2.32) to zero is called an 
equilibrium point of the state equation (2.32) [22]. Since 
UC =uR and i, =iR, for this example, there is a one-to-one 
correspondence between the equilibrium points of (2.32) 
and the operating point? of the tunnel diode in the associ- 
ated resistive network obtained by open-circuiting the 

8Each solution of a Resistive network N is called an operating point of 
N. The corresponding voltages and currents associated with an internal 
Resistor Rj is called an operating point of Rj. 

Ef-YhL 3iii&FJS% 
0 

(a) (b) (4 

Fig. 11. (a) Josephson junction circuit: The constitutive relation of the 
nonlinear inductor is given by i4 = IO sin k Q . 
tive circuit has a unique operating point, t% 

(b) Although the resis- 
ere are infinitely many 

equilibrium points if E < RI,. (c) There are no equilibrium points if 
E:*ZU,. 

capalcitor and short-circuiting the inductor as shown in 
Fig. 10(b). 

The operating points in this case are simply obtained by 
the :load-line construction shown in Fig. lo(c). Note that 
there are 3 isolated operating points so long as E# RG. On 
the other hand, there are infinitely many nonisolated 
equilibrium points if E= RG. 

Since any physical network can have only one solution 
at any time, a purely resistive network, such as Fig. 10(b), 
having multiple operating points is ill-posed unless it is 
associated with a dynamic network, thereby allowing one 
to d’etermine which operating point is actually observable 
in p:ractice. 

Whether an operating point of a resistive network can be 
physically observed depends on the stabdity of the corre- 
sponding equilibrium point of the associated dynamic net- 
worlc. It is important, therefore, that simple criteria be 
developed for testing whether an equilibrium point is 
observable in practice. 

Example 11. The state equation for the Josephson 
junction network shown in Fig. 1 l(a) is given by 

4, =E-RZ,sink+, (2.33) 

whe:re 1, and k are device constants. Note that we pick +L 
as the state variable because i, =&sin k+, is not bijective. 
The equilibrium points of (2.33) can be obtained in 2 
steps: 1) Find the operating point (i, = E/R) of the 
resistive network obtained by short-circuiting the inductor 
(v, := & = 0). 2) Each intersection of the +L -i, curve with 
the horizontal line i, = E/R represents an equilibrium 
poin.t of (2.33). 

If E < RI,, (2.33) has infinite& many isolated equilibrium 
poin.ts as shown in Fig. 1 l(b). Since & >0 whenever 
i, <E/R, and $, <O whenever i, > E/R, the dynamic 
route is as shown in Fig. 1 l(b). Note the equilibrium 
poin.ts alternate from stable to unstable points. 

If E > RI,,, (2.33) has no equilibrium points. In this case, 
the dynamic route in Fig. 11(c) shows &(t) will increase 
indefinitely (from left to right along the curve). 

This example demonstrates 3 important observations: 
1. Equilibrium and operating points are generally dis- 

tinct concepts: Here, we have a unique operating 
point but infinitely many equilibrium points if E < 
RI, and no equilibrium point if E > RI,. 

2. To avoid ambiguity, it is necessary to specify the 
state variable before finding equilibrium points. 
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Equhbrlum pmnts 
cotresoondma to 

Fig. 12. A network containing a.cut set of capacitors. 

3. A realistic physical inductor circuit model can sup- 
port a solution &(t)+cc at t+cc so long as its 
associated current iL(t) remains bounded for all 
times. 

Example 12. The state equation for the network in Fig. 
12(a) is given by 

UC, = -due, +uc,> L fi(UC,Y UC,> (2.34a) 

(a), 
. 

‘L3 
InvarIant surface M’(I.1. I) 

Equihbrwn po~ntr 
corresponding to 0, (vC’-EO) 

(c) 
Fig. 13. (a) A network containing a loop of identical inductors L, = 

load-line intersects the i -oR curye at 3 operat- 
and Q,. (c) The set of eqti mm pomts plotted on .%. 

space (drawn with I,, = 1). Each line of equilibrium 
y Identifying 2 points on the line: (O,O,O) and (l,l, 1) 

forQ,;(-l,-f,-i)and(l,t,f)forQ,;(-t,-l,O)and(l,t,t)for 
Q9. The 4th coordinate o is a constant along each line. Each initial 
current (iL (0), iL2(O& iL,(8)) identifies a 2-dimensional invariant sub- 
manifold i& + iL2 + zL3 = i, (drawn with ie = 3). 

UC2 = -gbc, +uc,> %a%,9 UC,). (2.34b) 

The nonlinear resistor has 3 isolated operating points % = uc$“) + uc,co> = %* This property follows from KCL 

when i, =0 (open-circuiting both capacitors C, and C,), and the observation that qc, = uc, and qc, = uC2: 

as shown in Fig. 12(b); namely, uR = - l,O, 1. Since u, + i,l(t)+iC2(t)=0*qC,(t)+qC,(t) 
UC2 = OR, it follows that each operating point gives rise to a 
whole line of nonisolated equilibrium points, as shown in = 4c,w + ‘k,(O) 

Fig. 12(c). 
The qualitative behavior of the nonisolated equilibrium 

points in Fig. 12(c) differs drastically from those in Fig. 
10(c) when E= RG: a slight perturbation of the i,-u, 
curve in Fig. 12(c) changes the equilibrium point locations 
only slightly, whereas a slight perturbation of R from the 
value R = E/G in Fig. IO(c) would change the nonisolated 
equilibrium points into one, two, or three isolated 
equilibrium points. In other words, the network in Fig. 
12(a) is structuraZ& stab/e whereas that in Fig. 10(a) is not 
when E = RG. 

Nonisolated equilibrium points are generally of no prac- 
tical interest if they are structurally unstable. In this 
example, however, they represent a nonpathological cir- 
cuit property. In fact, the equilibrium points in Fig. 12(c) 
can be considered to be isolated in the sense that once the 
initial voltages u,,(O) and uc,(O) are specified, the trajecto- 
ries are constrained to move along the straight line uc, + 

= UC,(O) + UCJO) k 2)‘). 

Hence, each initial condition specifies a 45”-trajectory line 
whose intersections with the 3 lines of equilibrium points 
in Fig. 12(c) give rise to 3 “isolated” equilibrium points. 
To determine which one will actually be attained, we 
translate the dynamic route in Fig. 12(b) (note that tic, > 0 
and tic,> 0 whenever i, CO; and tic, <0 and ijc2<0 
whenever i, > 0) into the trajectory lines in Fig. 12(c) and 
observe that each equilibrium point corresponding to Q, 
or Q3 is asymptotically stable, whereas that corresponding 
to Q, is unstable. 

Each trajectory line in Fig. 12(c) is called a one- 
dimensional invariant submanifold because any solution 
starting from a point on such a’line must remain on that 
line. 

Example 13. The state equation for the network shown 
in Fig. 13(a) is given by 
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UC, = -&[g(uc)+iLz-i,~] ~fi(ucA,,&iJ 

lL, = -f[2iL,-iL1-iLJ 

R -- -1 
lL2= L 

[ 
‘L, +iLI- 2 

(2.35a) 

2 fi( u,, iL,, iL,, iL,) 

(2.35b) 

1 A f3( q, iL,, iL2, iL,) 
(2.35~) 

: R -- -i 
IL,= L, 

[ 
L, +iL3 + s 

I 
A f4( u,, iL,, iL2, iL,) 

(2.35d) 

where g( uc) denotes the i, -uR curve shown in Fig. 13(b). 
To determine the equilibrium points, let us first open- 

circuit the capacitor, short-circuit the 3 inductors and find 
the operating points of the nonlinear resistor as shown in 
Fig. 13(b): Q,: uR = -E,, i, =I,; Q,: uR =O, i, =O; Q,: 
uR=Eo, i,= -I,. Each operating point uniquely de- 
termines the voltage and current of the 2 R-G? linear 
resistors (u, = ub = - uR, i, = i, = i, /2). The equilibrium 
points can now be determined by finding (uc, iL,, iL2, iL,) 
corresponding to Q,, Q2, and Q3 by applying KCL and 
KVL: 

Q IO ,: u,= -E,, iL,=iL2--, iL,=iL2-IO 
2 

(2.36a) 

Q 2: u,=O, i,,=i, =i, 2 3 (2.36b) 

Q,: u==E,, i,,=iL2+ 2, iL,=iLl+IO. (2.36~) 

Note that for each operating point Q,, there correspond 
a unique capacitor voltage u,, but a continuum of inductor 
currents (iL,, iL2, L, i ). If we plot only the equilibrium 
inductor currents in the i,, -iL, -i,, space, we would 
obtain 3 infinite lines of nonisolated equilibrium points as 
shown in Fig. 13(c), where the 4th coordinate u, is also 
indicated. 

Integrating uLl(t)+uLJt)+uL,(t)=O from 0 to t, we 
obtain 

~L,(t)+~LL,(t)+~L,(t)=~L,(O)+~L,(O)+~L,(O) 

= LiL,(0) + LiL2(0) + Li,JO) 

A Li,. 

Hence, once the initial inductor currents are specified, the 
solution ( iL,(t), i,,(t), iL,(t)) is constrained to lie along the 
plane i,, + iL, + iLo = i, as shown in Fig. 13(c) (drawn with 
i, =3). Since any trajectory starting from a point on this 
plane must remain on this plane, we have once again an 
invariant submanifold (a two-dimensional surface in this 
case). Since each line of eqtiilibrium points intersects this 
plane at exactly one point, the equilibrium points are 
actually isoZated once the initial inductor currents are 

Fig. 14. A network having an unbounded capacitor c&age solution 
when the qc-uC curve is as shown in ,Fig. 14(b), and unbounded 
capacitor charge solution when the qc-uc curve is as shown in Fig. 
14(c). 

specified. Hence, the qualitative behavior of trajectories in 
the vicinity of each equilibrium point can be analyzed as 
if the equilibrium points are isolated. ’ 

For example, using the assumed initial value i,JO)+ 
iLz(0)+iL3(O) g i, =3 in Fig. 13(c), we substitute iLJ = 

- i,, - iL, + 3 into (2.35(a), .@), (c)) and obtain a reduced 
thind-order state equation 

UC,= - c -!-[g(uc)+iL,+2iLz-31 ~j,(o,,iL,,iLJ 

IL, = - 

lL2= - 

We can 
third-order 

(2.37a) 

:[3i,,-31 A&uc,iL,,iL2) (2.37b) 

R 
z [ 

-i,, +iLl+ 21 L&(uc, iL,, iL,). (2.37~) 

interpret (2.37) as the state equation of a 
dynamic network obtained by replacing the 

third inductor in Fig. 13(a) by a current-controlled current 
souI*ce described by i,, = -i,, -iL, +3. 

Observe that the state variable iL, has been eliminated 
and (2.37) gives rise to 3 isolated equilibrium points: Q,: 
(- E,, 1, f), Q,: (0, 1, l), Q3: (E,, 1, i), Using the assumed 

value I, i 2Eo /R in Fig. 3.18(c), we calculate the eigen- 
values of the Jacobian matrix at each equilibrium point 
and find Q, and Q, to be asymptotically stable, and Q, to 
be unstable. 

2.4. Examples Concerning Boundedness of Solutions 

Example 14. Let the capacitor in Fig. 14(a) be de- 
scribed by the constitutive relation shown in Fig. 14(b). 
The associated state equation is given by 

=o, qc =o. (2.38) 

The dynamic route in Fig. 14(b) shows that 1 q,-(t)1 < 00 
for all t. However, its associated voltage 

f&(t) = 
1 1 

lfi=z +* 
as t+-. 

2 
(2.39) 

Hence, a bounded capacitor “charge” solution does not 
imply a bounded capacitor “voltage” solution. 

Example 1.5. Let the capacitor in Fig. 14(a) be de- 
scribed by the constitutive relation shown in Fig. 14(c). 
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6) @) 
Fig. 15. A passive network having a bounded capacitor charge and 

voltage solution but an unbou&e~ resistor current solution. 

(4 @ I 
Fig. 16. A network made of strictly passive and strictly locally passive 

elements driven by a sinusoidal voltage source can give an unbounded 
zero-state solution. 

The associated state equation is given by 
Qc = - eqC. (2.40) 

The dynamic route in Fig. 14(c) shows that all solutions 
r+(t)+0 and qJt)=ln(l/t)+-co as t+co. Hence, a 
bounded capacitor “voltage” solution does not imply a 
bounded capacitor “charge” solution. 

Example 16. The state equation for the network shown 
in Fig. 15(a) is given by 

1 cc=-.---, 
2% 

v,#O 

=o, u, =o. (2.41) 

The capacitor charge and voltage solution q&t) = 
uc( t) = m  is clearly bounded. However, the resistor 
current solution 

iR(t)= 
1 1 

vi=% --)O” 
as t--+-. 

2  
(2.42) 

Since both elements in Fig. 15(a) are passive,’ this 
example shows that passivity alone is not sufficient to 
guarantee that all solutions are bounded. 

Example 17. The state equation for the network in Fig. 
16(a) is given by 

tic =i; (2.43a) 

IL = -tar&i,-v,+Esint. (2.43b) 

Note that the resistor, inductor, and capacitor are both 
strictly passive and strictly locally passive.” It is easy to 
show that if E = 0, the origin is a globa& asymptotically 

9A multi-terminal (or multi-port) Resistor R is said to be passive 
{resp.; strict!~ parsioe) ifj iiu= > 0 {resp.; izuR > 0, except at origin} for 
all (iR, uR) satisfying the constitutive relation of R [20]. 

Hence, a 2-terminal Resistor R is passive e its 0,-i, curve lies only 
in the first and the third quadrants. R is strict& parsice4t is passive and 
its un-i, curve does not touch the oR- and i,-axis except the origin. 

loSee Dejinilion 5 in Section 4.1. 

Fig. 17. A network (driven by a periodic source) having infinitely 
many distinct periodic solutions depending only on the initial voltage 
q-(O) < E. 

(4 (b) 
Fig. 18. A network having at least 3 subharmonic solutions. 

stable equilibrium point in the sense that all solutions tend 
to the origin at t+co, regardless of initial conditions. 

However, if E > 4/a, the zero-state solution iL(t)+co 
as t+co [24]. 

This example shows that it is not possible to guarantee 
boundedness of solutions even if all elements are both 
strictly passive and strictly locally passive. 

2.5. Examples Concerning Steady-State Solutions 

Example 18. The state equation for the network shown 
in Fig. 17(a) is given by 

+=g(Esint- +). (2.9 
Since g( uR) > 0, this network cannot have a noncomtant 
periodic solution even though it is driven by a periodic 
input signal. 

Moreover for any initial voltage o,(O) > E, (2.44) admits 
the constant solution 

%A*) = 40)~ tzo. (2.45) 

This example shows that it is possible for a nonlinear 
network to exhibit more than one-infinitely many for 
this example-distinct periodic solutions, even if all ele- 
ments (except the source) are passive and locally passive. 

Example 19. The state equation for the network shown 
in Fig. 18(a) is given by 

. . 
vc =lL (2&a) 

: . 4  
lL=lL 

.3 
---I 3 L -vv,+cos3t. (2.46b) 

Depending on the initial condition, (2.46) has at least 3 
distinct periodic solutions at l/3 of the input frequency: 

o,(l)=sin( t+ F), k=O, I,2 (2.47a) 

i,(t)=cos( t+ F), k=O, 1,2. (2.47b) 
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are described as in Table I: 
Table I. Constitutive Relations of the Elements in Fig. 

Fig. 19. A network having 2 distinct nonconstant periodic solutions. 

Y 

L, I d . . 

Fig. 20. Any RLC network GJZ. can be represented by an n-port resistor 
N terminated by nc (possibly coupled) capacitors and nr. (possibly 
coupled) inductors, where n = nc + nL. 

Since the “output” frequency is smaller than the “input” 
frequency, we say the network has at least 3 distinct 
subharmonic solutions. 

Example 20. To show that even networks containing 
only strictly locally passive elements can give rise to more 
than one steady-state regime, the network shown in Fig. 
19 has been simulated on a computer [25]. The simulated 
results give at least 2 distinct steady-state solutions: a 
“periodic” waveform of the same frequency and an “al- 
most subharmonic” waveform. 

III. GLOBAL STATE EQUATION Fo RMULATION AND 
LOCAL SOLVABILITY 

Any RLC network can be represented as shown in Fig. 
20, where all capacitors and inductors are connected 
externally to a resistive n-port ZV. Since the capacitors 
{resp., inductors} may be coupled to each other, multi- 
terminal and/or multi-port capacitors and inductors are 
included in this representation. Two-terminal, multi- 
terminal, and/or multi-port resistors, as well as indepen- 
dent voltage and current sources are also included in N. 
For example, diodes, transistors (described by the Ebers- 
Moll equation, controlled sources, gyrators, and ideal 
transformers are resistors (because their constitutive rela- 
tions are described by algebraic equations involving only 
currents and voltages) and are therefore included in N. 

To simplify notation, we assume all elements, except 
possibly the independent sources, are time-invariant and 

20. 
- 

1. Resistive n-port N 
Hybrid Representation: 

i, =h,(v,, ib; u,(t)) (3.1) 

ub=hb(%,ib; us(*)) (3.2) 

where u,(t) i [E,(t), I,(t)]’ denotes the indepen- 
dent sources. 

2. Capacitors 
voltage-controlled Representation: 

!zc =9c(%) (3.3a) 

charge-controlled Representation: 

0, =azc) (3.3b) 
3. Inductors 

Current-controlled Representation: 

+L =+L(iL) (3.4a) 

flux-controlled Representation: 

iL =iL(+,). (3.4b) 
- 

3.i'. Two Common Formulations 
The examples in Section 2.1 show that a network is 

ill-l~osed if there exist impasse points because solutions 
starting from such points do not exist, while solutions 
arriving at such points at to cannot be continued in 
forward time t > to, or in backward time t < t,. Such 
net.works are nonphysical and can not have a globa& 
defined state equation. 

In this paper, we exclude ill-posed networks (except 
Section 3.4) and consider only those networks having a 
globally defined state equation 

i=f(x, t) (3.5) 
wheref: Iw n+i+Rn is a P-function of x, k > 0.” 

Given (3.5), we can define infinitely many equivalent 
state equations 

where y=p(x) and its inverse function x =a( y) are any 
C’ -bijective functions. In other words, if % has a global 
state equation in terms of some state variable x, then we 
find infinitely many other variables which also qualify as 
state variables. 

To simplify our notation, we will consider only the two 
most common choices; l2 namely, x=(uc,iL) or z= 
(40 +L) 

‘!‘f(x, t) is said to be a Ck-function of x if/ at any time t, all of its 
k&order derivatives exist [26] for all x E R”, and each partial deriwtiw 
of order k is a continuous function. For example, f is a Co-function iff it 
is continuous, and a Ct-function iff it is continuour~ differentiable. 

‘ILFor some special classes of networks, the Lagrangian or HamiItonian 
formulation may be more appropriate [27]-[29]. 
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( 1) u, -i, Formulation : 
Assume all capacitors are voltage-controlled and the 

incremental Capacitance matrix 

(3.7a) 

is nonsingular for all 0, E WC. 
Assume all inductors are current-controlled and the 

incremental Inductance matrix 

(3.7b) 

is nonsingular for all iL E WL. 
Substituting !c = & = C(u& = -i, into (3.1) and 

u, =t), =L(iL)tL = -u6 into (3.2), we obtain the follow- 
ing state equation in terms of the state variables u, and i,: 

I I 
UC= -C-‘(ucM.(u,,ib; u,(t)) 
. = -L-‘(i,)R,(u,, ib,; u,(t)). 

(3.8) 
‘L 

I 

(2) qc +L Formulation: 
I 

Substituting (3.3b) for u, and (3.4b) for ib in (3.1)-(3.2), 
and noting that & = -i, and +L = -ub, we obtain the 
following state equation in terms of the state variables qc 
and ~JB~: 

I I 
4c’ -k&7,),~Lw; u,(t)) 

&L = -h&44c)~ iLIL(+L); u,(t)). 

(3.9) 

I I 

A network % described by either (3.8) or (3.9) is said to 
be autonomous iff u,(t) = k is a constant vector; i.e., % 
contains only dc sources. Otherwise, ‘X is said to be 
nonautonomous. 

If we define 

xP[;]=[;], yqy, e[;] (3.10) 

then (3.1)-(3.4) and (3.7) can be written as follows: 
Resistor Function : 

y=h(x; u,(t)) 2 
[ 

kh, 4; u,(t)) 

b(u,, b.; u,(t)) 1 (3.11) 

Capacitor-Inductor Function: 

(3.12) 

Capacitance-Inductance Matrix: 

D(x) L o 
[ 

C(v) 0 1 L(iL) ’ 
(3.13) 

Using these abbreviated notations, the state equations 
(3.8) and (3.9) for autonomous (where we suppressed the 
constant source vector) and nonautonomous networks as- 
sume the following compact forms [25], [30], [31]13 

“The reader is cautioned that our notations differ from those in [25], 
[30], [31]. Specifically, x, y, z, h(x), and g(z) in this paper correspond to 
XP9 -v,, z,, g,(x,), d hp(zp) in r251, [301, r311. 

/N /N 
il + 

“Cl c, Iv1 
In 

+ i2 

“cz 

s 

c* TV2 II-l 

i3 U-l 

vc,+ c3 +v3 
- - 

(a) 03 
Fig. 21. (a) A 3-capacitor autonomous RC network 97,. (b) The resis- 

tive 3-port N associated with 97, driven by 3 voltage sources q, u2, and 
o3 corresponding to the 3 capacitor voltages I+-,, t+ and Q. 

3.2. On the Existence of the Resistor Function 

J 

(1) u, - iL Formulation: x L (uc, iL) 

Autonomous Networks: 

f- -4r’(x)h(x) (3.14a) 

Nonautonomous Networks: 

i= -W(x)h(x; u,(t)) (3.14b) 

where /I(.) and D-‘(x) are Co-functions of XE~ 
R”. 

(2) qc -+r Formulation: z A (qc, +L) 

Autonomous Networks: 

i= -h(g(z)) 

Nonautonomous Networks: 

(3.15a) 

z *= -cdz); u,(t)) (3.15b) 

where /I(.) and g(e) are Co-functions of xER”. 

The preceding state equation formulation is deceptively 
simple because it assumes the resistor function h(x; u,(t)) 
defined in (3.1) is given a priori. For each network, this 
function must be derived before the state equation can be 
written. The following examples show that this is not only 
a nontrivial task, but it could happen that such a function 
does not exist. 

Example I. Consider the 3-capacitor autonomous RC 
network ‘X shown in Fig. 21(a). Since x= (uc,, ucDc,, uc,), 
the resistor function L(x) for the associated resistive 3-port 
N is simply its conductance representation i=Gu. To 
derive this function, we drive N with 3 voltage sources u,, 
u,, u3, as shown in Fig. 21(b), and determine the resulting 
port currents i,, i,, and i3. Observe, however, that since 
the voltage sources form a loop, they can not be chosen as 
independent variables for N. Hence L(X) does not exist. 

Example 2. Consider the 3-inductor autonomous RL 
network GJC shown in Fig. 22(a). Since x= (iL,, iL2, iL,), the 
resistor function n(x) for the associated resistive 3-port N 
is simply its resistance representation u = Ri. To derive this 
function, we drive N with 3 current sources i,, i,, and i,, 
as shown in Fig. 22(b), and determine the resulting port 
voltages ui, u2, and u3. Observe, however, that since the 
current sources form a cut set, they can not be chosen as 
independent variables for N. Hence L(x) does not exist. 
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(4 
Fig. 22. (a) A 3-inductor autonomous network %. (b) The resistive 

3-port N associated with 97, driven by 3 current sources i,, i,, and i, 
corresponding to the 3 inductor currents iL,, iL2, and iL,. 

N c N 
I , Y 

(4 0 
Fig. 23. (a) An autonomous RC network 9L. (b) The resistive 2-port N 

associated with 92 driven by a voltage source o, (corresponding to 
capacitor C) and a current source i2 (corresponding to inductor 15). (c) 
A typical ‘Zener diode” vR,-iR, curve. (d) A typical “p-n junction 
diode” 0 4 curve. (e) A typical “neon bulb” vR,-iR, curve. (f) A 
typical “%rm~~ diode” vR2-i,, curve. 

Example 3. Consider the autonomous RLC network % 
shown in Fig. 23(a). Since x= (u?.,, iL,), the resistor ftmc- 
tion h(x) for the associated resistive 2-port N is obtained 
by driving port 1 with a voltage source u, and port 2 with 
a current source i,, as shown in Fig. 23(b), and then 
solving for i, =h,(u,,i,) and u, =h,(u,,i,). Since i, = 

lR1 -i, and u, =uR, +ui, it is necessary to express i, and 
uR2 in terms of the 2 independent variables u, and i,‘. Let 
us consider 2 illustrative cases: 

Case I. Assume R, is a Zener diode described by the 
iR,+R curve shown in Fig. 23(c) and R, is ap-n junction 
diode described by the iR2-vR2 curve shown in Fig. 23(d). 
Note that R, is current-controlled but not voltage- 
controlled because i,, is undefined for uR, > E, and uR, < 
- E,. Similarly, R, is voltage-controlled but not current- 
controlled because uRz is undefined for iR, < -I,. Hence, 
even though both curves are strictly increasing, the resis- 
tor function 

i, =h,(u,,i,) A iR,(u,)-iz, -E,<ul<Ez 

(3.16a) 

is not defined for all (u,, iz) E Iw’. Hence ii(x) does not 
exist in the region E2 =G u, < -El and i, < -I,. 

Case 2. Assume R, is a neon bulb described by the 
iR,+“R, curve shown in Fig. 23(e) and R, is a tunnel diode 
des’cribed by the iR,-vR2 curve shown in Fig. 23(f). Since 
R, is a multi-ualued function of vR, over E, < uR, GE, and 
R, is a multivalued function of iR, over I, < iR, < 12, the 
resistor function /r(x) does not exist in the region El < u1 < 
E2 and I, < i, <I,. 

The preceding examples give rise to several important 
observations concerning the existence of h(x; u,(t)). 

Observation 1. The resistor function h(x; u,(t)) does not 
exist whenever 9L contains a loop made exclusively of 
capacitors and/or voltage sources (henceforth called C-E, 
Zoop), or a cut set made exclusively of inductors and/or 
current sources (henceforth called L-I, cut set). 

The nonexistence of h(x; u,(t)) under Observation I 
does not necessarily imply that 92 does not have a state 
equation. In fact, by choosing only 2 out of 3 state 
variables, both circuits in Figs. 21 and 22 have a well- 
defined state equation. 

Systematic methods for deriving state equations for 
nonlinear networks containing C-E, loops and L-I, cut 
set,s are given in [ 12, ch. lo]. Unfortunately, these methods 
often involve an excessive amount of algebra, thereby 
making it all but impossible to derive the “nonlinear” 
state equation in an explicit analytical form. This is why 
most results and theorems concerning dynamic nonlinear 
networks are stated only for networks, containing neither 
C-E, loops nor L-I, cut sets. From a practical point of 
view, this represents a severe restriction because most 
rea.listic semiconductor device models contain capacitor 
loalps (representing stray capacitances) and inductor cut 
sets (representing parasitic inductances) [32], especially for 
high-frequency operations. 

Fortunately, the following result shows that the above 
restriction is unnecessary. 

Theorem 1. C-E, Loop and L-I, Cut Set Transfonna- 
tlon [ 301, [ 33]14 

(a) Every C-E, loop in % may be eliminated by 
o:pen-circuiting any one capacitor in the loop, and by 
modifying the constitutive relations of the remaining 
elements in the loop, without altering the solutions of 
5x. 

(b) Every L-I, cut set in 92 may be eliminated by 
short-circuiting any one inductor in the cut set, and by 
modifying the constitutive relations -f the remaining 
elements in the cut set, without alteti-rg the solution of 
GJL. 

(c) The modified constitutive relations of the capaci- 
tors and the inductors can be derived explicit& from 
the original constitutive relations 1121, [30], [33]. More- 
over, most circuit-theoretic properties (e.g., reciprocity 
(Definition 4), passivity, (Definition 5) strict local passiv- 
ity (Definition S), strong local passivity (Definition I)) 

2, =h2(vl, iz) A cR,(i2)+u2, i, > -I, (3.16b) 14A special case of Theorem 1 which holds only for Iinear networks is 
given in [12, pp. 434-4361. 
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6) (b) 
Fig. 24. (a) Equivalent network obtained by open-circuiting capacitor 

C, from Fig. 21(a), thereby eliminating the capacitor loop. (b) Equiva- 
lent network obtained by short-circuiting inductor L, from Fig. 22(a), 
thereby eliminating the inductor cut set. 

I possessed by the original elements are inherited by the 
transformed elements. 

Applying Theorem I to the networks shown in Figs. 
21(a) and 22(a), we obtain the equivalent networks shown 
in Fig. 24(a) and (b). In the modified network % ’ of Fig. 
24(a), the value C, of the open-circuited capacitor is 
added to C, and C, while a “mutual capacitance” equal to 
C, is introduced between C; and C;. Note that % ’ no 
longer contains a C-E, loop. In the modified network 92 
of Fig. 24(b), the value L, of the short-circuited inductor 
is added to L, and L, while a “mutual inductance” equal 
to L, is introduced between L’, and L;. Note that % ’ no 
long& contains an L-I, cut set. 

From the qualitative analysis point of view, we seldom 
need to actually implement the above transformations. It 
is property (c) which we will find most useful: it allows us 
to generalize trivially any result or theorem .(which previ- 
ously exclude C-E, loops and L-I, cut sets) whose hy- 
potheses invoke one or more of the “preserved” circuit- 
theoretic or structural properties to networks that allow 
both C-E, loops and L-I, cut sets. 

Observation 2 shows that the state equations formulated 
in Table II of Section II implicitly assume that the net- 
works $92 contains neither C-E, loop nor L-Z, cut sets. 
Theorem I(c) shows that this assumption involves little loss 
of generality. 

Observation 2. The resistor function h( x; u,(t)) does not 
exist whenever a current-controlled (but not voltage- 
controlled) resistor is in parallel with a capacitor, or 
whenever a voltage-controlled (but not current-controlled) 
resistor is in series with an inductor. 

Observe that if we interchange the 2 resistors in Fig. 
23(a), the resistor function ii(x) becomes well defined (for 
both sets of curves in Fig. 23). This is because the indepen- 
dent variable defining each resistor coincides with an 
independent variable defining N; namely, vR, =v, and 
. . 

lR,=lz. 

Except for contrived cases, b(x; u,(t)) usually does not 
exist whenever N contains one or more voltage-controlled 
(but not current-controlled) resistors which are not in 
parallel with capacitors, or current-controlled (but not 
voltage-controlled) resistors which are not in series with 
inductors. Moreover, the nonexistence of h(x; u,(t)) in 
this case implies the nonexistence of the state equation. 

Observation 3. The problem of determining whether the 
resistor function L(n; u,(t)) exists for the dynamic net- 
work %  in Fig. 20 is equivalent to the problem of de- 

termining whether the associated resistive network (ob- 
tained by connecting n, voltage sources E, across the 
capacitor ports and nL current sources Z, across the induc- 
tor ports of the resistive n-port N) has a unique solution 
(or operating point) for all E, E UP and Z, E IwnL. 

If we examine the curves in Figs. 23(c)-(f) carefully, we 
will find points on each curve whose slope either tends to 
zero or infinity. Note that the resistor function h(x) 
would exist if the slope on each point of each curve is 
bounded from above and below by 2 positive finite wn- 
stants; namely, y <f’(x) =G 7. This property turns out to be 
a rather basic condition often invoked in theorems for 
nonlinear network containing both 2-terminal and multi- 
terminal elements. Hence, let us formally define this prop- 
erty for vector-valued functions: 

Definition I. Strong-Local Passivity 
A multi-terminal (or multi-port) Resistor, Inductor, or 

Capacitor” described by a constitutive relation [ll] y= 
h(x), where h: Iw”+W is a continuous function, is said to 
be Strong& Locally Parsive l6 iff there exist finite constants 
7 > y > 0 such that for all x’ and x N E W , we haveI - 

Y_IIX’-X”II* <(X’-xn)=[h(Xyh(xn)] =qq(x’--nNJ12 

(3.17) 

Theorem 2. Existence of Resistor Function 
The Resistor function h(x; u,(t)) associated with N 

of Fig. 20 exists for any bounded source vector u,(t) if 
the following 5 conditions are satisfied: 

1. There is no loop {resp., no cut set} formed exclu- 
sively by capacitors, inductors and/or independent 
voltage sources {resp.; current sources}. 

2. Each voltage-controlled (but not current- 
controlled) 2-terminal resistor is in parallel with a 
capacitor. Each current-controlled (but not voltage- 
controlled) 2-terminal resistor is in series with an induc- 
tor. 

3. Each remaining 2-terminal resistor is strongly lo- 
caIIy passive, or else it is either in parallel with a 
capacitor or in series with an inductor. 

4. Each multi-terminal (or multi-port) Resistor R, is 
strongly IocalIy passive, or else each voltage-controlled 
terminal pair (or port)18 of R, is in parallel with a 

“‘lhe mductors and capacitors are assumed to be Reciprocal [ZO] (see 
Definition 4) in this definition. 

*‘jAlso called strong& uniform& increasing in [30]-[3 11. In spite of the 
superficial similarity between the terminologies, “strong local” passivity 
and passivity, they are entire& independent concepts. As a useful 
mnemonic aid, whenever the word “local” appears, the curve (in the case 
of 2-terminal elements) must at least be monotone increasing. On the 
other hand when the term passivity appears without “local,” the curve 
need only ie in the first and third quadrants. However, the sZope may be 
positiw or negative at a point on the curve. 

‘7Throughout tl$s epe r II.Ij, denotes the Euclidean norm; i.e., )I x  II= , 
[X:+X;+... +x,1 . 

‘*A terminalpciir (or port) of a multi-terminal (or multi-port) resistpr 
R, is said to be voltage-controlled {resp., current-controlled), iff 1,‘s 
associated voltage {resp., current} quahfies as an independent vanable m  
a well-defined representation y, =a(~,) of R,. For example, if R, is 
described by i, =hl(ul, i2) 2 uf +i$ and o2 =ht(ul, iz) k  sin(u, +i,), 
then port ‘1 is voltage-controlled (but not current-controlled) while port 2 
is current-controlled (but not voltage-controlled). Note that c1 and i, are 
multi-valued functions of i, and c2 and, therefore, do not qualify as 
independent variables. 
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capacitor, and each current-controlled terminal pair (or 
port) of R, is in series with an inductor. 

The constitutive relations of all (k+ I)-terminal or 

The proof of Theorem 2 depends on several results from 
[30], [34] and is given in Appendix A.I. 

Note that conditions l-5 are mostly topological in 
nature and hence can be easily checked by inspection. 
The only condition that needs to be checked for strong 
local passivity can be determined by inspection of the i-v 
curve in the case of 2-terminal resistors, or by the follow- 
ing algebraic test in the case of multi-terminal (or multi- 
port) resistors: 

Strong Local Passivi@ criterion [ 30]t9 
Let the constitutive relation h(x,) in Definition I be a 

Cl-function and let W(x,) be its associated incremental 
hybrid (Jacobian) matrix. 

A multi-terminal (or multi-port) Resistor, Inductor, or 
Capacitor is strongly local& passivewhere exist 2 positive 
constants & and x such that the 2 matrices H(x,) - Al and 
xl - H( x,) are both positive semi-definite for all x, E R” (1 
denotes the identity matrix). 

Remarks.’ 1. It follows from the above criterion that 
locally active elements, such as transistors, cannot be 
strongly locally passive. However, realistic models of 
such elements usually contain a capacitor in parallel with 
each voltage-controlled terminal pair (or port) and an 
inductor in series with each current-controlled terminal 
pair (or port). Consequently, Theorem 2 is in fact applica- 
ble to a very large class of properly modeled dynamic 
networks. 

2. Conditions l-3 of Theorem 2 are necessary for the 
existence of the resistor function /I(x; u,(t)). 

3. Conditions 4 and 5 of Theorem 2 are “almost” neces- 
sary for the existence of li(x; u,(t)) in the following sense: 
if port j of R, is voltage-controlled but not current- 
controlled, then it is usually necessary that port j be. in 
parallel with a capacitor. Likewise, if port j of R, is 
current-controlled but not voltage-controlled, then it is 
usually necessary that port j’be in series with an inductor. 
However, exceptions can occur in some artificial and 
contrived examples. 

4. For the special class of transistor-diode networks 
which may not satisfy condition 5, the existence of 6(x; u,(t)) can be checked by necessary and sufficient condi- 
tions given in [9]. In this case, b(x; u,(t)) for a given 
network may exist for certain numerical values of element 
parameters (say the value of some resistances) but not 
exist for certain other values. 

In contrast to this element parameter dependency,*’ 

“For a time-varying constitutive relation k(x,, t), simply apply this 
criterion at each time t. 

Z”It is important to distinguish between conditions which depend on 
element parameters from those which do not. We will refer to the latter 
as graph- or circuit-theoretic conditions. One of the most significant and 
challenging problems in nonlinear network theory is to derive qualitatiw 
properties involving only graph- and circuit-theoretic conditions if at all 
-possible. 

Theorem 2 depends only on the network topology and on 
the strong local passivity of certain elements. 

3.3. On the Existence of a Global State Equation 

‘We are now ready to address the basic question posed 
earlier: When does an RLC network have a global CO-state 
equation? 
- 

Theorem 3. Global State Equation Existence Criteria 
(a) v, -I.~ Formulation 
The state equation (3.14) exists for all x A (vc, iL) E 

R” if the following conditions are satisfied: 
1. The topological condition 1 of Theorem 2 is 

satisfied. 
2. The resistors satisfy conditions 2-5 of Theorem 

2. x 
3. The capacitors can be described by a Cl-voltage 

-controlled representation (3.3a) whose incremental 
capacitance matrix C(v,) is nonsingular for all qc E 
w=. 

4. The inductors can be described by a Cl-current- 
controlled representation (3.4a) whose incremental in- 
d.uctance matrix L(i,) is nonsingular for all +L E W’L. 

(b) qc-+ Formulation 
The state equation (3.15) exists for all t A (qc, f/a,) E 

IFS” if the following conditions are satisfied: 
1. The topological condition 1 of Theorem 2 is 

satisfied. 
2. The resistors satisfy conditions 2-5 of Theorem 

2. 
3. The capacitors can be described by a CO-charge- 

controlled representation (3.3b). 
4. The inductors can be described by a Co-flux- 

controlled representation (3.4b). 
- J 

The proof of Theorem 3 follows directly from (3.14), 
(3:15), and Theorem 2. 

Remarks. 1. In the more general mixed formulation 
where some capacitors {resp.; inductors} are Cl-voltage- 
controlled {resp.; C’-current-controlled} While others are 
Co -charge-controlled { resp. ; Co -flux-controlled}, Theorem 
3 is still applicable (mutatis-mutandis) by combining the 
conditions (a) and (b) in an obvious way. 

2. Although not all conditions in Theorem 3 are neces- 
sary for the existence of a global state equation, they are 
“almost” necessary in the sense that except in contrived 
cases, most networks which violate one or more condi- 
tions of Theorem 3 do not have a global state equation 
regardless of the choice of state variables. 

3. The non-existence of a global state equation for ‘% 
usually, but not always, leads to the existence of impasse 
points, as demonstrated in Examples 3 and 4 of Section 
2.1. In order to uncover the precise condition which gives 
rise to impasse points, let us review Examples l-5 of 
Section 2.1. 

3.41 On Local Solvability 
Observe that impasse points occur in Examples 3 and 4 

because it is impossible to write a state equation even if 
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the state space is restricted to an arbitrarily small neigh- 
borhood of Q, and Q,. This observation motivates our 
next definition: 

Let z A (qc, +L) and x 2 (uc, +,). A point Q in R” X 
Wwith coordinates (z,, x,) = (qcQ, c#B~~, ucQ, iLp) is called a 
capacitor-inductor operating point of the RLC network % 
in Fig. 20 iff (qc , u, ) and (& , i, ) satisfy the constitu- 
tiue relation2’ of &e cipacitors agd igductors, respectively. 

Definition 2. Local Solvability 22 

(3.18) 
where f.Z( *) is a C’ function which generally depends on 

The RLC network % in Fig. 20 is said to be locally 
solvable iff given any capacitor-inductor operating point 
Q: (z,, xe) and any time t,, there exists an e-neighborhood 
of Q and t, such that GJL has a C’ local state equation 

i=fo(z, t), forall llz-z,II<candIt-t,l<e 

Corollary. % is local& solvabIew(3.18) can be written in 
the form 

i= -k&w; u,(O) 

k f,<z, t), llz-Z&E, (t-t,l<e (3.22) 

where he(.) A (ha&-), k,J-)) and g&.1 k (+QC-), i^,,C.)l 
are C’ functions about Q and t,. 0 

In the usual case where &( +) and ge( .) do not depend 
on Q and t,, then (3.22) becomes the global state equation 
(3.15b). 

is the correct choice. 

Theorem 5. Capacitor Charge and Inductor Flux are 

The preceding definition on local solvability was stated 
in terms of one particular choice of state variables-out of 
infinitely many possibilities- namely, the capacitor charge 
qc and inductor flux +L. Our next theorem shows that this 

1 both Q&d t,, and c >O. Basic State Variables 

Theorem 4. Local Solvability Criteria 
The RLC network in Fig. 20 is local& solvable@ 

given any capacitor-inductor operating point Q: 
(qcQ, r#~,,~, ucQ, iLo) and any initial time t,, the constitu- 
tive relations in Table I have the following C’ loca123 
representation in an c-neighborhood of Q and t,,: 

1. The resistive n-port N has a C’ local hybrid rep- 
resentation h,( +) about the resistor operating point 
( u, , ib > = ( vcQ, iLo ) ; namely, 

I I 
i a =hap(va9 i,; u,(t)) 

ub =hbp(va7 ib; u,(t)) 
for all 11 VI2 -ucell <c, 

I I 

Ilib-i,pII<cand It-t,l<c. (3.19) 

2. Each capacitor has a C’ local charge-controlled 
representation about the capacitor operating point 
@c!,9 2.‘cp): 

UC = +!&7c ) 3 Ik -4cJI <c. (3.20) 

3. Each inductor has a C’ local flux-controlled rep- 
resentation about the inductor operating point 
(h,, i,J: 

iL =~LQC~L)9 114% -+LJ <E. (3.21) 

Proof Sufficiency is obvious. Necessity follows, 
mutatis-mutandis, from the qc -+L formulation given in 
Section 3.1. cl 

2’The constitutive relations of the capacitors and inductors are de- 
fined by fc(q,-, uc) = 0 and fL( Q 
not be x-controlled or r-contra lf 

, qL) = 0, respectively. Hence they need 
ed. This is why it is generally necessary 

to specify both z and x in order to identify an operating point Q 
unambiguously. For example, 0,~ 6, gives rise to 3 distinct points 
2(b) while qc =6 gives rise to 3 &stmct points in Fig. 3(b). 

in Fig. 

uThis definition is a nonaufono- version of Dejhlion I in [36] but 
with the state variables chosen to be capacitor charge qc and induc~orfrux 
CPL. 

23By local, we mean the functions k&q), G,,(e), and iL,( .) in (3.19), 
(3.20), and (3.21) generally depend on both the operating point Q and 
the initial time fo. 

If GJL is not locally solvable, then there exists no other 
state variable which can give rise to a C’ local state 
equation about each capacitor-inductor operating point 
Q. , 

Proof: The proof requires a coordinate-free geomet- 
ric approach [237]-[39]. A more abstract differential- 
geometric version of this theorem is stated and proved in 
[391* cl 

Observe that Theorem 5 does not hold if local solvability 
is defined in terms of capacitor voltage u, and inductor 
current iL . Indeed, Example 2 (Fig. 2) does not have a 
local state equation with respect to v, at Q, and Q,. Yet 
the network has a C’ global state equation (2.17) in terms 
of qc. Likewise, Example II (Fig. 11) does not have a 
local state equation with respect i, at infinitely many 
isolated points (k& = k(m+ 1/2)~, m=O, + 1, 22;. +). 
Yet the network has a C’ global state equation (2.33) in 
terms of &. 

Our main motivation for defining local solvability was 
to derive the weakest condition which guarantees that 
there are no “impasse” points. To prove this formally, we 
.must define impasse points precisely: 

Definition 3. Impasse Point” 
A capacitor -inductor operating point Q : 

(4C,~ 4JLpY UCQ’ Lo i )is called an impasse point of the RLC 
network 97, iff there are no C’ functions 
(qc(t), +L(f)y uc(t), iL(f)) w ith 
(qc(td9 +L(t,9 uc(toh iL(to>) = (qcQp 4~ vcop iLo) which 
satisfy KCL, KVL, and the elements constitutive relations 
over (t, - E) < t < (t, + e) for arbitrarily small c > 0. q 

It follows from Definition 3 that % can not have a 
solution passing through an impasse point over any finite 
time interval. Our next theorem shows that the existence 
of an impasse point is a local phenomenon and, therefore, 
can be avoided by weaker “local” conditions which do 
not require that GJC have a global state equation. 

“Note that this definition is stated directly in terms of the elements’ 
constitutive relation and therefore does not require that % have a local or 
global state equation. 
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Theorem 6. No-Impasse-Point Criterion 
If the RLC network % in Fig. 20 is local& solvable, 

then % has no impasse points. 

Proof If % is locally solvable, then given any zQ = 
kc,, h.,) E FJ” and any to9 ‘% can be described by a local 
state equation (3.18) where&(z, t) is a Cl-function about 
(+, to). Hence there exists a unique solution z(t)= 
(qc(t),+L(t)) such that z(to)=zQ for It-t,l<r, where 
l >O [ 121. It follows from (3.20) and (3.21) that % has no 
impasse points. El 

To illustrate the significance of Theorems 4, 5, and 6, 
consider the following examples from Section 2.1 again: 

Example I (Fig. I). % is local& solvable&K has no 
impasse points inspite of the fact that its state equation 
(2.13) with respect to v, does not exist at v, = 1. 

Example 2 (Fig. 2). % is locally solvableti% has no 
impasse points inspite of the fact that its state equation 
(2.18) with respect to v, does not exist over the interval 
5+h,<6$. 

Fig. 25. A gyrator network which does not have a local C’ state 
equation at qc =(I= = 0. 

capacitor-inductor operating point Q at any initial time 
to. 

Example 3 (Fig. 3). % is not locally solvable because 
(3.20) fails (C is not locally charge-controlled at Q, and 
Q2). Here, we find 2 impasse points at Q, and Q,. 

Example 4 (Fig. 4). % is not locally solvable because 
(3.19) fails (R is not locally voltage-controlled at Q, and 
Q,). Here, we find 2 impasse points at Q, and Q,. 

Example 5 (Fig. 5). % is local& solvable&X has no 
impasse points inspite of the fact that its state equation 
with respect to qc does not exist globally. 

Example 6 (Fig. 6). GJL is not locally solvable because 
vc = &(4c) = c; 4c)1’3 is not C’ at qc = 0. Here, we find 
qc =O is an impasse point. 

Remark. Although Theorem 6 provides only a sufficient 
condition for no impasse points, Examples 3, 4, and 6 
strongly suggest that any network which is not local& 
solvable is potentially ill-posed and should be remodeled. 

In the following sections, we make the standing assump- 
tion that all networks under consideration can be de- 
scribed by either a C’ global state equation (3.14) or (3.15) 
in order to simplify the statement of the theorems. In 
particular, we assume (unless otherwise stated) that the 
resistor function /I( -) in (3.11) and the capacitor-inductor 
function g( *) in (3.12) are C’ functions in R”, where 
n=nc +n,. 

It is not possible to state a general uniqueness theorem 
which involves only conditions that can be easily checked 
at the element level. This is because even if all elements 
are described by a C’ constitutive relation, the resulting 
state equation need not be C’. 

IFor example, consider the simple gyrator network in 
Fig. 25(a), where the resistor is described by the C’ 
function shown in Fig. 25(b). All elements are clearly C’ 
but the state equation25 

3 l/3 4c = z4c (4.2) 

is not C’ at qc =O. Indeed (4.2) has infinitely many solu- 
tions 

qc(t)=O, O<t<k 

=(t-k)3’2, t>k (4.3) 
wh.ere k is any real number. 

If we replace the i,-v, curve by that shown in ,Fig. 
25(c), the state equation 

& = - 3q;/3 (44. 

is still not C’ at qc =O. However, in this case, (4.4) has a 
unique solution corresponding to any initial condition. 

‘The above example suggests that sufficiently strong 
circuit-theoretic properties must be imposed at the ele- 
ment level to guarantee local uniqueness. Hence, let us 
define some of these properties first.26 

4.1. Basic Circuit-Theoretic Properties 

Definition 4. Rectprocity 
(a) A multi-terminal (or multi-port) Resistor de- 

scribed by a C’ function h(o) in (3.1)-(3.2) is reciprocal iff 
its associated incremental hybrid matrix 

IV. QUALITATIVE PROPERTY 1: No 
FINITE-FORWARD-ESCAPE-TIME SOLWIONS 

H(v,,i,; u,(t))= 
ah,/av, aria/X, 
ah,/av, ah,/ai, 

(4.5) 
The absence of impasse points does not guarantee that 

the solution exists for all time t. Neither does it guarantee 
that the associated initial-value problem 

f=f(x, t), x(t,) =x0 (4.1) 
has a unique solution: Example 6 does not have a solution 
for t > T and Example 7 does not have a unique solution. 

Both of. these nonphysical situations can not occur if 
f( 0) satisfies a local Lipschitz condition with respect to x in 
a neighborhood of x0 [12]. In particular, if % is locally 

satisfies the following property for all (v,, ib) E R” and for 
all tER: 

1. Ha, and Hbb are symmetric. (4.6) 
2. Hab = -HA. (4.7) 

25Recall the effect of the gyrator is to reflect the i,-u, curve along the 
45”~line through the origin [22]. 

“%~e following definitions are stated in terms of the representations 

solvable, then GJL has a unique solution through each 
given in Table 1. They are equiwdent to the generalized coordimte- 
indqwzdent definitions given in [20], [30], [38]. 
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(b) A multi-terminal (or multi-port) Capacitor de- 
scribed by a C’ function in (3.3a) or (3.3b)‘is reciprocal 
iff its associated incremental capacitance matrix 
cw L amk or its incremental elastance matrix 

s(q,) 2 w47cm.7c are symmetric for all vc E WC and 

qc E WC, respectively. 
(c) A multi-terminal (or multi-port) Inductor de- 

scribed by a C’ function in (3.4a) or (3.4b) is reciprocal $f 
its associated incremental inductance matrix 
L(iL) L &&(;,)/a’ I~ or its incremental rectprocal induc- 

tance matrix r(+,) L azL(+,)/ai, are symmetric for all 
it E IR”L and (p, E WL, respectively. 

The following properties concerning reciprocity ar 
proved in [43], [44].*’ 

.e 

Theorem 7. Properties Involving Reciprocity. 
1. Closure Property: A multi-terminal (or multi-port) 

N made of arbitrary interconnection of reciprocal resis- 
tors {resp.; capacitors, inductors} results in a reciprocal 
resistor {resp.; capacitor, inductor} provided N can be 
described by a C’ constitutive relation. 

2. Every 2-terminal Resistor, Capacitor, inductor 
characterized by a C’ function is reciprocal. 

3. Every nonreciprocal capacitor or inductor is active. 
4. A C’ charge-controlled or voltage-controlled 

capacitor is losslesswit is reciprocal. 
5. A C’ flux-controlled or current-controlled induc- 

tor is lossless&t is reciprocal. 

It follows from Properties 1 and 2 that the resistive 
n-port N in Fig. 20 is reciprocal if it contains only 2- 
terminal resistors and independent sources. However, if N 
contains even one nonreciprocal resistor, such as a transis- 
tor or gyrator, N will generally become nonreciprocal ex- 
cept in contrived cases. This means that any hypothesis 
which requires that N be reciprocal would virtually ex- 
clude transistors or other nonreciprocal elements. 

Properties 3 and 4 show that all realistically modeled 
capacitors and inductors must be rectprocal. Therefore, 
there is little loss of generality in assuming that all capaci- 
tors and inductors in Fig. 20 are Reciprocal. 

Definition 5. Local Passivity and Strict Local Passivity 
A multi-terminal (or multi-port) Resistor, Inductor, or 

Capacitor described by a constitutive relation JJ~ = h( n,), 
where h: lFJ”+lW is a C’ function, is said to be locally 
passive {resp.; strictly local& passive} at a point x* E Iw” ijf 
its incremental matrix 

is positive-semi-definite { resp.; positive definite} at x, =x,*. 
The element is said to be locally passive {resp.; strictly 

local& passive} iff H(x,) is positive-semi-definite {resp.; 

“Unless otherwise stated, all Resistors, Inductors, and Capacitors in 
this paper are assumed to be time-invariant. 
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positive definite}28 for all x, E KY. 
The element is said to be local& active iff it is not locally 

passive. 
Remarks. 
1. A 2-terminal Resistor, Inductor, and Capacitor is 

locally passive {resp.; strictly locally passive} at x,* @the 
slope of the i, -vR, r$-iL, and qc-vc curve at x,* is 
nonnegative { resp. ; positive}. 

2. Strong local passivity (Definition l)+strict local pas- 
sivity~localpassivity. The converse is of course false. For 
example, the resistor described by the i,-v, curve in Fig. 
17(b) is locally passive but not strictly locally passive 
because the slope is zero for vs < 0. That shown in Fig. 
16(b) is strictly locally passive but not strongly locally 
passive because the slope is not bounded from below by 
y > 0. 

3. For 2-terminal elements, the only difference among 
these 3 circuit-theoretic properties is that the characteristic 
curve of a locally passive element may contain isolated 
points having a zero slope, or even an entire horizontal 
segment (which is not allowed in the other two properties); 
that of a strictly locally passive resistor may saturate and 
therefore need not tend to cc as x,+co. In contrast, the 
curve for a strongly locally passive element must tend to 
+ cc as v,+f co. 

4. For the time-varying case where y=h(x; t), simply 
apply Definition 5 at each instant of time. In particular, 
note that a dc or time-dependent voltage source or current 
source is locally passive although it is globally active. 

Theorem 8. Properties Involving Local Passivity and 
Strict Local Passivity 

1. Closure Proper@ : The resistive n-port N in Fig. 20 
is locally passive if all elements inside N are local& 
passive. 

2. Almost Closure Proper@: 29 The resistive n-port N 
in Fig. 20 is strictly locally passive if: 

(a) all elements inside N are strict& local& passive. 
(b) there is no loop {resp.; cut set} formed exclu- 

sively by capacitors, inductors, and/or voltage {resp.; 
current} sources. 

Proof See proofs for Theorem I and Theorem 7 in 
[301- 
4.2. Local Existence and Uniqueness of Solutions 

Theorem 9. Local Uniqueness Theorem 
An RLC network 92 having a continuous local state 

equation about any initial point (v&to), iL(to)) has a 
unique solution over some time interval (to - l ) < t < 
(to +e), e>O, if the following conditions are satisfied: 

1. All Resistors in GJC are locally passive. 

“An n X n real (not necessarily symmetric) matrix A is pasitiue semi- 
definite (resp.; positioe &jZnite} iff xTAx> 0 {resp.; >O) for all real 
n-vectors x#O. It can be shown that A is positive-semi-definite 
positive definite} if and only if A +A= is positive semi-definite I 

resp.; 

positive definite}. 
resp.; 

“Arbitrary interconnection of strictly locally passive elements do not 
always give rise to a strictly locally passive element! See [30] for counter 
examples. 
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26. (a) If the o,-i, curve lies within the shaded region for all 
o, I> k,, the network in Figs. 8 and 9 have no finite-forward and 

backward escape-time solutions. (b) If the cR-iR curve lies within the 
expanded shaded region for all IoR I> k, the network in Figs. 8 and 9 
have no finite-forward-escape-time solutions. 

2. All Capacitors and Inductors in ‘?I2 are linear, 
Reciprocal, and strictly locally passive. 

Proof: See [23]. El 
Applying Theorem 9 to the gyrator network in Fig. 25(a) 

with the i,-v, curve in Fig. 25(c), we find all conditions 
are satisfied’and conclude that the network has a locally 
unique solution. 

The hypotheses of Theorem 9 are extremely strong and 
hence Theorem 9 is applicable to only a very small class of 
networks. For a more general local uniqueness theorem, 
see [23]. 

4.3. No Finite-Forward-Escape-Time Solutions 

Example 8 shows a network having a unique local 
solution can have a finite-forward-escape-time solution. 
Example 9 shows a network having a locally unique solu- 
tion can have a finite-backward-escape-time solution. 

One of the most general theorems for guaranteeing no 
finite forward and backward escape time-solutions is due to 
Wintner [31]. Unfortunately, Wintner’s theorem has little 
practical value because its conditions are so strong as to 
exclude any polynomial nonlinearity of degree greater than 
one. For example, Wintner ‘s Theorem ‘says that the net- 
works in Figs. 8 and 9 have no finite escape-time-solutions 
if the i,-v, curve of the nonlinear resistor lies within the 
shaded region shown in Fig. 26(a). Note that the i,-v, 
curve in Figs. 8(b) and 9(b) eventually lie outside the 
shaded region shown in Fig. 26(a), and indeed the former 
has a finite-forward-escape-time solution while the latter 
has a finite-backward-escape-time-solution. 

These examples (Example 8 has a second-degree poly- 
nomial) shows that Wintner ‘s Theorem is in fact quite 
sharp and that the conditions can not be significantly 
weakened. This suggests that most networks having poly- 
nomial nonlinearities of degree greater than one have 
either a finite forward or backward escape-time-solution. 

From the circuit point of view, however, the property of 
having no finite-backward-escape-time-solutions is a luxury 
that is seldom needed. After all, one is usually interested 
on the solution after some initial time to (e.g., the time a 
switch is closed) and hence only finite-forward-escape- 
time-solutions represent a nonphysical situation that must 
be avoided [ 111, [40]. 

It turns out that a much weaker theorem can be derived 
which guarantees that there will be no finite-forward- 

Fig. 27. (a) The cR 4, curve of an ecentual& passive 2-terminal resis- 
tor. @) The 0,-i, curve of an eventually strong& locally passive 
2-terminal resistor. 

escape-time-solutions. See Theorem B-2 of [3 11. The condi- 
tions in Theorem B-2 are so weak that most networks of 
practical interest would be allowed. For example, this 
theorem says that the network in Fig. 8 has no finite- 
forward-escape-time-solution if the i,-v, curve lies in the 
ex,Danded shaded region in Fig. 26(b). Observe that the p-n 
junction diode i,-v, curve in Fig. 9(b) meets this require- 
ment and hence the network in Fig. 9(a) has no finite- 
forward-escape-time solutions. Note that since the shaded 
region in Fig. 26(b) includes points in the 2nd and 4th 
quadrants, even active resistors are allowed. 

.Roughly speaking, Theorem B-2 of [31] guarantees that 
GJL in Fig. 20 will have no finite forward-escape-time solu- 
tions if the resistive n-port N is “no more active” than an 
active linear n-port resistor. 

To derive conditions at the element level, it is conveni- 
emt to assume that all voltage and current sources have 
been combined with internal resistor: (as in Appendix Al) 
so that each “composite” resistor R, inside the resistive 
n-port N is described by 

h,=h,l”t~,+b,(t))+c,(t) A h,lf,a, t). (4.9) 

Definition 6. Eventual Passivity and Eventual Strict Pas- 
sivity 

,4 multi-terminal (or multi-port) Resistor having a con- 
stitutive relation (4.9) is said to be eventually passive in the 
sense that at any time t, 

X;~~&.R,, f) > 0, for all 11 -E,= II >ko (4.10) 

where k, is any finite number. It is said to be eventually 
strictly passive iff the inequality sign in (4.10) is replaced 
by a strict inequality. 

Definition 7. Eventual Strong Local Passivity 
A multi-terminal (or multi-port) Resistor, Inductor, or 

Cqvacitor is said to be eventually strong& locally passive iff 
(3.17) holds for all x’ and x” satisfying llx’ll > k, and 
llX”ll >ko, where k, is any finite number. 

To illustrate the difference between Definitions 6 and 7, 
Fig. 27(a) shows the i,-v, curve of an active but eventu- 
aBy passive 2-terminal resistor, whereas Fig. 27(b) shows 
the is-v, curve of an active but eventual& strongly locally 
pa.ssive as well as eventually passive 2-terminal resistor. 
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Note that the slope in Fig. 27(a) tends to co as uR+bo, 
and to 0 as uR+ - co..Hence this resistor is not eventually 
strongly locally passive. In contrast to this the slopes in 
Fig. 27(b) are bounded from below by some positive 
number y and from above by some positive number u. It 
can be &own that eventual-strong-local passivity implies 
eventual passivity. 

Theorem 10. No-Finite Forward-Escape-Time-Criteria 
An RLC network %.described by either state equa- 

tion 93.14) or (3,15) has no finite-forward-escape time 
solutions if the following 3 conditions are satisfied: 

1. There are no loop and no cut set made exclusively 
of capacitors and/or inductors. (Assume all voltage 
and current sources have been combined.with the inter- 
nal resistors forming “composite” resistors described by 
(4.9).) 

2. All capacitors and inductors are Reciprocal and 
eventually strongly locally passive.30 

3. All “composite” resistors are eventually passive. 

Proof: Follows directly from Theorem A and .Theorem 
3 from [3 11. El 

Remark. Conditions l-3 are stronger than necessary 
and can be further relaxed. For example, the “0” on the 
right-hand side of inequality (4.10) can be replaced by 
-k, where k is any finite number; etc. Even then, the 
piesent hypotheses are already quite weak and are easily 
satisfied by most practical networks. For example, the 
networks in Figs. 9, 10, 12, 13, 16, 17, 18, and 19 all satisfy 
the hypotheses and hence have no finite-forward-escape- 
time solutions. The same is true of most networks contain- 
ing capacitors, inductors (except Josephson junction de- 
vices) resistors, diodes, transistors, op amp’s, etc. 

V. QUALITATIVE PROPERTY 2: LOCAL ASYMPTOTIC 
STABILITY OF EQIJILIBRKJM POINTS AND 
OBSERVABILITY OF OPERATING POINTS 

Examples 10 and 11 from Section 2.3 show how to give 
physical meaning to a resistive network %, having multi- 
ple operating points (i.e., solutions): we must remodel %R 
by a dynamic network % which reduces to ‘XR when all 
capacitors are replaced by open-circuits and all inductors 
by short-circuits. Each operating point of %, corresponds 
to one or more equilibrium points of %: In Exar@e 10 
(FigJO), there is a one-to-one correspondence. In Example 
II (Fig. II), GJC, has only one operating point, but % has 
infinitely many isolated equilibrium points. In Example 12 
(Fig. 12), ‘?& has 3 isolated operating points,3’ but each 

sr’To apply the strong-local-passivity criterion in Sec. 3.2 for checking 
eventual strong local passivity, we only ‘need to check the conditions for 
all x satisfying 11 x, 1) > k,. 

3’When obtaining the resistive network 97,x, associated with a dynamic 
network 9L, we delete any cut set made of open circuits and contract any 
Ioqo made of short circuits. 

For example, %= associated with Fig. 12(a) consists of only the 
open-circuited resistor. The 2 open circuits associated with C and C, are 
deleted because they form a cut set. This means that all 1~) tuges ucross t 
cqacitors fotming a- cut set do not qpear in 9LR. 

Likewise. %. associated with Fig. 13(a) consists of 3 resistors in 
parallel. The 3-‘short circuits associ&d 6&ti the 3 inductors are con- 
tracted (by coaltxing the 3 nodes) because they form a loop. This means 
that all currents in the inductors forming a loop do not qpear in 9LR. 
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gives rise to a line of noniiolated equilibrium points. Like- 
wise, in Example 13 (Fig. 13), XR has 3 isolated operating 
points, each giving rise to a line of equilibrium points. 

Whether an operating point Q of a resistive network 
aI? is observable at a given time or not depends on 
whether the initial (just prior to measurement) capacitor 
voltages and inductor currents of the associated dynamic 
network ‘TX is located within the basin of a corresponding 
asymptotica& stable eqtiilibrium point [41]. For example, 
the operating point Q, in Fig. 10(c) is not obseruable if 
R > l/G because its corresponding equilibrium point is 
unstable [22]. On the other hand, the other 2 operating 
points Q, and Q3 are observable because Theorem 9 below 
implies that their corresponding equilibrium points are 
asymptotically stable. The basin of Q, {resp.; Q3} consists 
of all points to the Zeft {resp.; right} of an imaginary curve 
passing through Q,, as can be easily verified from the 
phase-portrait [22] of Fig. lo(a). 

The preceding discussion shows that equilibrium points 
are of basic importance in understanding the qualitative 
behaviors of nonlinear networks. Our objective in this 
section is to present some useful theorems on this subject. 

5.1. Mathematical Characterization of Equilibrium Points 

Definition 8. Equilibrium Point 32 
Let GJ be an autonomous RL.C network described by 

either state equation (3.14a) or (3.15a). 
(a) A point x* E Iw” is said to be an equilibrium point of 

(3.14a) iff 

D-‘(x*)n(x*)=o. (5.1) 

(b) A point i* E Iw” is said to be a equilibrium point of 
(3.15a) iff 

h(g(z*)) =o. (5.2) 

We call x* and z* equilibrium points because i(t)=0 
at X=X* and z(t)=0 at z=z*. Observe that x* =g(z*) in 
view of (3.12). 

Since D(x*) is nonsingular, by assumption, it follows 
from (3.8)-(3.10) that x=x* and z=z* if and only if 
i, =0, and vb =O. Hence, we have: 

Observation I. The capacitor currents and inductor 
voltages must vanish at an equilibrium point of (3.14a) or 
(3.15a). 

Observation 2. The equilibrium points x* = (uz, iz) of 
(3.14a) can be found by open-circuiting all capacitors and 
short-circuiting all inductors, and then finding the open- 
circuit voltages u, and the short-circuit currents i, of the 
associated Resistive n-port N. The equilibrium points z* = 
(q:, +z) is found by solving qz from ut =$(qE) and +z ^ 
from iz = it(#). 

Theorem II. Local Stability Criteria 
Consider the state equation 

f=f(x) (5.3) 

32Usualli called singukzrpoints in the mathematical literature. 
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where f(e): W’+!W is a C’ function. Then the local 
qualitative behavior of any equilibrium point x* of 
(5.3) is determined by its associated linearized system: 

i- af(x) 
ax X=X* k Ax. (5.4) 

In particular, we have 
(a) x* is asymptotical& stable if all eigenvalues of A. 

has negative real parts. 
(b) x* is unstable if at least one eigenvalue of A has a 

positive real part. 

Proof: This is a special case of a theorem proved in 
1421. 

Remarks. 
1. Since Theorem II pertains only to a small neighbor- 

hood of x*, it is obviously applicable if the RLC network 
GJL is locally solvable at x*. 

2. The Cl- requirement on f(e) can be further relaxed 
[42]. In particular, if we can write f(x) =Ax +g( x) where 
g(0) = 0, then Theorem 11 remains valid if g( *) is continu- 
ous and g(x)=O(llxll)2 as Ilxll+O. 

3. If A has an eigenvalue with a zero real part, higher 
order partial derivatives of f(e) at x* are necessary to 
determine the local behavior of x*. 

Let us now derive some useful criteria at the element 
level. 

5.2. Circuit - Theoretic Characterization of Equilibrium 
Points 

Theorem 12. Local avmptotic stability cfiteria 
Let % be a locally solvable RLC network. An 

equilibrium point of ?X (in terms of any choice of state 
variable) is aJymptoticalIy stable if the following condi- 
tions are satisfied: 

1. There is no loop {resp.; cut set} formed exclusively 
by the ports and/or voltage {resp.; current} sources. 

2. Each Resistor, Inductor, and Capacitor is strict& 
local& passitie at its respective operating point corre- 
sponding to the equilibrium point under consideration. 

3. All Capacitors and Inductors are reciprocal. 

Proof: Since % is locally solvable, it follows from 
(3.22) that it has a C’ local state equation 

i= -h&L&)) A fQ(Z) (5.5) 

about any equilibrium point z*. The associated Jacobian 
matrix is 

afQ(z 1 ah,(x) 
A= at =- 

ag,w .- 
L=L* ax x-g(z*) az ZwL= 

g -ffD-‘. (5.6) 

Since N is strictly locally passive in view of Theorem 8(b), 
both H and D -’ are positive definite matrices. Moreover, 
D -’ is symmetric. 33 It follows from Lemma I in [45, p. 

33The incremental hybrid matrix H is generally not symmetric even if 
N is Reciprocal in view of (4.7). 

Fig. 28. (a) An oscillatory network which satisfies all hypotheses ex- 
cept condition 1 of Theorem 12. (b) An oscillatory network which 
satisfies all hypotheses except condition 2 of Theorem 12, when R, and 
R:, are described as in (c) and (d). 

5291 that all eigenvalues of D - ‘H r have positive real 
parts. Since A = i (D -‘HT)T, it follows that all eigen- 
values of A have negative real parts. Hence z* is asymp- 
totic:ally stable in view of Theorem II(a). Since any other 
state variable is related to Z bijectiuely, the qualitative 
behavior is preserved. cl 

Applying Theorem 12 to the network in Fig. 10(a), we 
conclude by inspection of Fig. 10(c) that both Q, and Q3 
are asymptotically stable. Similarly, for the network in 
Fig. 1 l(a), we conclude by inspection of Fig. 1 l(b) that all 
equilibrium points having a positive slope are asymptoti- 
cally stable. 

To demonstrate the conditions 1 and 2 in Theorem 12 
are generally necessary, consider the 2 networks shown in 
Figs. 28(a) and (b). Since the linear balanced bridge 
network in Fig. 28(a) oscillates with any nonzero initial 
condition, the equilibrium point (uc, i,,) = (0,O) is not 
asymptotically stable, although it is stable-in-the sense of 
Lyapunou [22, 421. Note that this network violates on& 
condition 1. 

Likewise, by restricting the initial condition to ( u,(O)1 < 2 
and 1 i=(O)1 < 2, the network in Fig. 28(b) with R, and R, 
described in Fig. 28(c) and (d) behaves like a parallel LC 
oscillatory tank circuit. Hence the equilibrium point 
(vc, iL)= (0,O) is also not asymptotically stable. Note that 
this network violates only condition 2. It is easily verified 
that the eigenvalues for these 2 networks are purely imag- 
inaty and hence neither Theorem II nor Theorem 12 is 
applicable. 

Observe next the networks analyzed earlier in Example 
I2 (.Fig. 12) and Example 13 (Fig. 13). Both violate on& 
condition 1 of Theorem 12: C, and C, form a cut set in 
Fig. 12(a) while L,, L,, and L, form a loop in Fig. 13(a). It 
is easily seen from (2.34) and (2.35) that the associated 
Jacobian matrix has a zero eigenvalue because their com- 
ponent equations are not linearly independent. Hence, 
Theorem II is also not applicable. For these 2 networks, 
howlever, unlike those of Fig. 28, our previous analysis 
shows that there is no oscillation in a neighborhood of 
each equilibrium point, and hence an operating point is 
actu.ally observable if its associated equilibrium point on 
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the invariant submanifold (which is fixed by the initial 
condition) is asymptotically stable. 

In other words, even though Lyupunou’s definition 
would have classified the nonisolated’ equilibrium points 
as not asymptotically stable (note that 2 arbitrarily close 
initial conditions falling on a line of equilibrium points 
remain stationary), this classification would be misleading 
for these networks because it would suggest that the 
associated operating points are not observable. This con- 
clusion is of course contrary to the actual phenomenon 
that is taking place in Figs. 12(c) and 13(c). 

Observe that all trajectories in Fig. 12(c) are restricted 
to lie on a line (one-dimensional submanifold of Iw2) 
M*( uc,(0), uc,<o>) once the initial condition ( uc,(0), u,z(O)) 
is given. Likewise, all trajectories M  in Fig. 13(c) are re- 
stricted to lie on a plane (two-dimensional submanifold of 
R4) M*(iJO), iL,(0), iL2(0)) once the initial condition 
(iLI(0), i,,(O), iL,(0)) is specified. It follows from these ob- 
servations that it is physically more meaningful to classify 
the local stability of equilibrium points in Figs. 12 and 13 
directly on the invariant submanifold M*. Mathemati- 
cally, this is equivalent to eliminating one of the state 
variables in Examples 12 and 13 and then analyzing a 
reduced-order state equation, as we have done in (2.37). 
The zero eigenvalue will no longer be present and hence 
Theorem 11 can be applied to deduce the asymptotic 
stability or instability of’ an equilibrium point Qi. This 
translates directly into a physically meaningful conclusion 
as to whether the associated operating point is observable 
or not. 

It turns out that the phenomena displayed in Examples 
12 and 13 are quite typical and can be completely char- 
acterized by the following theorems: 

Theorem 13. Isolated Equilibrium Point Criterion 
Let %  be an autonomous RLC network described by 

state equation (3.14a) with (vc, iL) as the state varia- 
bles. Assume the associated resistive n-port network 
%, obtained by open-circuiting all capacitors and 
short-circuiting all inductors (recall footnote 31) has 
only isolated operating points. 

Then (3.14a) has only isolated equilibrium points@% 
contains no capacitor-only cut sets and no inductor-on& 
loops. 

Proof: See [46]. 
Remarks. 
1. Theorem 13 does not hold if (qc, cpL) is chosen as the 

state variables. For example, consider the network shown 
in Fig. 29. The resistive network %, has a single operat- 
ing point i, = E/R. Observe, however, any +r, ~{[1,2], 
[3,4], [6,7]} is an equilibrium point. 

2. We  can avoid the problem in Fig. 24(b) by requiring 
the (pr. -i, curve to be trunsversul (not tangent in this case) 

“More precisely, Fig. 13(c) represents the projection of trajectories 
(0 (t), i=,(t), i 
s&pace. In fk2 

(I), i,,(t)) in W 4  onto the three-dimensional i,, -iL2 -iL) 
e general case, such a projection would normally occupy 

a three-dimensional region m  R3. In Fig. 13(c), however, it is only 
two-dimensional. 

1079 

R t ‘L n , 

Fig. 29. A network having an isolated dc operating point but noniso- 
bed equilibrium points over the intervals [1,2], [3,4], [6,7]. 

with respect to the resistor load line. It turns out that this 
observation can be generalized with the help, of trunsver- 
sulity theory from Differential Topology. The reader is 
referred to [46] for a self-contained introduction to this 
powerful tool. We  will close this section with an informal 
statement of this generalization: 

Theorem 14. Implications of Capacitor-Only Cut Sets 
and Inductor-Only Loops 

Let GJL be an autonomous RLC network described by 
(3.15a) with z =(qc, +L) as the state variables. Assume 
the associated Resistive network GJC, has only isolated 
operating points. Assume further that a certain truns- 
versa&y condition3’ is satisfied. 

Conclusion : 
1. State equation (3.15a) has only isolated equilibrium 

point&Z contains no capacitor-only cut sets and no 
inductor-only-loops. 

2. There is an invariant minimal dynamic subspace 
M*(z,,) c R” which is uniquely determined by the initial 
condition z(t,,)= z0 such that the trajectory z(t; t,, zO) 
remains on M*(zo) for all tat,, where n=nc+n,, 
n, = number of capacitors and nL = number of induc- 
tors in %.36 

3. The invariant minimal dynamic subspace M*(za) 
is an n*-dimensional affine submanifold of R”, where 
n*=n-(ii,+ii,), ii,= number of linearly independent 
capacitor-only cut sets and ii, =number of line& 
independent inductor-only loops. 

4. The set M  of all equilibrium points of GJ consist, 
of the union of M(Qr), M(Q,); . . ,; -. , M(Q,), where 
M(qj) denotes a continuum of nonisolated equilibrium 
points corresponding to the isolated operating points Qj 
of %,. 

5. Each set A4(Qj) of nonisolated equilibrium points 
of (3.15a) intersects the minimal dynamic space M* at 
only isoZated points. Hence, GJi: behaves as if it has only 
isolated equilibrium points. Moreover, the local stabil- 
ity of each equilibrium point of (3.15a), and hence the 
observability of the corresponding operating point Qj of 
the associated Resistive network ‘XR, can be de- 
termined by applying Theorem II to a reduced-order 
state equation in R”’ when the initial conditions are 
restricted to lie on M*(zO)l 

35This correspondsto condition 3 of Theorem 2 in [46]. This condition 
is automatically satisfied if all capacitors and inductors are strongb 
Iocally pas&e. 

36M*(zo) can be interpreted as obtained by translating (and possibly 
rotating) the n*-dimensional Euclidean space R”’ to the point ze in R”. 
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Fig. 30. (a) Au trajectories must eventually enter and remain inside the 
closed and bounded set 3c. (b) A continuum of periodic orbits, one for 
each initial condition. 

/ 

VI. QUALITATIVE PROPERTY 3: EVENTUAL 
UNIFORM BOIJNDEDNESS OF SOLUTIONS 

Examples 14-17 from Section 2.4 show that a network 
having no finite-forward-escape-time solutions may still have 
solutions which tend to co as t-so. Moreover, Examples 
14 and 15 show that the boundedness of solutions with 
respect to the state variables z = (qc, &) does not guaran- 
tee the boundedness of solutions with respect to x= 
(uc, i,), and vice versa. Furthermore, Example 16 shows 
that even if both z(t) and x(t) are bounded, the associ- 
ated current i,(t) and voltage q,(t) of the Resistive n-port 
N in Fig. 20 need not be bounded. Finally,, Examples 15 
and I7 show that a network containing only strictly local& 
passive elements can have unbounded solutions. Our ob- 
jective in this section is to present simple circuit-theoretic 
criteria for avoiding unbounded solutions. 

Definition 9. Eventually Unzformly Bounded Network 
The RLC network % in Fig. 20 is said to be eventual& 

unzformly bounded with respect to state variables x= 
(uc, i=) {resp.; z = (qc, #Do)} iff given any bounded source 
vector u,(t), there exists a closed and boundgd set 5%~ IF!?’ 
such that any solution x(t) of (3.14) {resp.; z(t) of (3.15)) 
enters and remains inside 3E. for all time t > T, where 
T< cc may depend on the initial condition and on the 
initial time. 

Remarks. 
1. The source vector u,(t) must be bounded for Defni- 

tion 9 to make sense. Otherwise, most networks can be 
made unbounded by driving it with an unbounded source 
waveform, say v,(t) = e’. 

2. The adjective “eventually” is used to suggest that all 
trajectories must eventually be “sucked” into the set % 
and remain inside it thereafter, as depicted in Fig. 30(a). 

3. The adjective “uniform” is used to emphasize that 
the closed and bounded set X does not depend on the 
initial condition, or on the initial time. It is fixed once the 
source vector u,(t) is specified. Observe that this property 
is stronger -than mere “boundedness” of solutions. For 
example, each solution of an LC harmonic oscillator is 
bounded as shown by the infinite continuum of concentric 
periodic orbits in Fig. 30(b). But since it is impossible to 
prescribe a closed and bounded set X which contains all 
the orbits,’ the solutions are not eventually uniformly 
bounded. Note that it is possible to find xif we allow it to 
depend on the initial condition.37 

3’Criteria for guaranteeing this weaker form of boundedness are given 
in [25], [31]. Due to space limitation, only results on eventual uniform 
boededness will be presented in this section. 

1 Theorem 15. Eventual-Unzform-Boundedness Criteria 
The RLC network in Fig. 20 is eventually -uniformly 

bounded with respect to either z = (qc, +L) or x = (+,‘iL) 
if the following conditions are satisfied: 

1.. The Resistive n-port N is eventually strictly passive 

Z!. All capacitors and inductors are Reciprocal and 
eventually strbngIy lo&ally passive (Definition 7). 

3. The Resistor function h(y) and the capacitor- 
inductor function g( *) are C1 -functions. 

J 
Proof: The proof with respect to the state variable 

z = (qc, +=). is given in [25]. The same proof holds with 
respect to x = (v,, iL) because g(e) is “eventually” a Cl- 
bijective function inview of conditions 2 and 3. 0. 

Remarks. 
1. Since the Resistor function b(a) is C’, conditions 1, 

2, and 3 actually guarantee that all solution waveforms, 
including i,(t) and uz,(t) are eventually uniformly 
bounded. 

2. Condition 2 can be replaced by a weaker “growth 
condition” [25]. 

at the Element Level 
The RLC network in Fig. 20 is eventually unzformry 

bounded with respect to either z = (qc, +L) or x = (u,, iL) 
if the following conditions are satisfied: 

1. There is no loop {resp.; no cut set} formed exclu- 
sive:ly by capacitors, inductors, and/or voltage sources 
{ resp.; current sources}. 

2. All internal Resistors are eventually strongly lo- 
cal1.y passive (Definition 7) 

3. All Capacitors and Inductors are Reczprocal and 
eventually strongly locally passive (Definition 7). 

4. The Resistor function R(o) and the Capacitor- 
Inductor function g(e) are CL-functions. 

I 
-Proof See the proof of Theorem 2 in [25]. 

Remarks. 
1. Condition 2 can be replaced by a slightly weaker 

condition. See Theorem 2 of [25]. 
2. Condition 4 is unnecessarily strong. Except in contri- 

ved and highly pathological situations, Condition 4 can be 
replaced by the requirement that all element constitutive 
relations are continuous functions. 

To show continuity is an important condition,38 note the 
capacitor voltage in Example 14 is unbounded because the 
capacitor function is discontinuous at qc =O. Likewise, 
the, resistor current in Example 16 is unbounded because 
the resistor function is discontinuous at vR = 0. 

3. Conditions 1, 2, and 3 are reasonably sharp in the 
sense. that there exists networks which are not eventually 
unifo~rmly bounded and which violates only one of these 3 
conditions: (a) The network in Fig. 28(a) is not eventually- 
uniformly bounded (only Condition 1 is violated). (b) The 
inductor current in Example 17 is unbounded (only Con- 

3*We can further weaken this condition to allow “finite” discontinui- 
ties. However, the statement and proof become awkward. 



CHUA: DYNAMIC NONLJNEAR NJSIWORKS 

Fig. 31. An RC network which oscillates. 

dition 2 is violated). (c) The capacitor charge in Example 
15 is unbounded (only Condition 3 is violated). 

4. Most realistically modeled networks are eventually 
uniformly bounded. 

VII. QUALITATIVE PROPERTY 4: COMPLETE 
STABILITY AND GLOBAL ASYMPTOTIC STABILITY OF 

ALJTONOMOUS NETWORKS 

An eventually uniform& bounded network may oscillate 
or display bizarre and chaotic behavior [15]. Except for 
oscillators, all properly designed networks must have at 
least one of the following qualitative properties: 

Definition 10. Completely Stable Network 
An autonomous RLC network is said to be completely 

stable [47], [48], [31], [35] #each solution of state equation 
(3.14a) or (3.15a) through any initial state at t, exists for 
all time t > t, and tends to an equilibrium point as t+co. 

Definition II. Global-Asymptotically Stable Network 
A completely stable network is said to be global& 

wmptotically stable [49], [50], [3 l] if all solutions tend to a 
unique equilibrium point. 

Theorem 17. Complete Stability Criteria for RC Net- 
work 

Any RC network ‘%,c (containing only capacitors, 
resistors, and dc sources) described by either (3.14a) or 
(3.15a) is completeIy stable if the following conditions 
are satisfied: 

1. All Resistors are Reciprocal and eventually strong- 
& local& passive (Definition 7). 

2. AI1 Capacitors. are strongly locally passive (Defini- 
tion I). 

3. The Resistor function h(m) and capacitor function 
g( .) are C’ functions. 

L 

Proof GJL,, is described by (3.14a) or (3.15a) implies 
there are no loops made of capacitors and voltage sources. 
It follows from Theorem I6 that %,, is eventually uni- 
formly bounded. The remaining proof is standard. See 
P1l,Wl, [491. 0 

Remarks. 
1. Condition 1 is simply condition 2 of Theorem 16 plus 

Reciprocity. Condition 2 is simply condition 3 of Theorem 
16 with the word “eventually” deleted. 

2. To show that condition 1 of Theorem I7 is not superf- 
lous, consider the linear passive RC network shown in 
Fig. 31(a). Since this network is equivalent to the LC 
parallel circuit in Fig. 31(b), it is not completely stable. 
Note that the gyrator is neither reciprocal nor eventually 
strongly locally passive. To show that reciprocity is essen- 
tial, let us connect a 2-terminal resistor having the i,,--v, I 

1081 

curve shown in Fig. 28(c) in series with the capacitor C,. 
The “composite” 2-port resistor consisting of the gyrator 
and the inserted resistor is eventually strongly locally 
passive but still nonreciprocal. Since uR, =0 for Ii,, I< 2, 
the equivalent LC circuit in Fig. 31 still holds, and can 
support an oscillation with Ii=, ] <2. Hence the network is 
not completely stable. 

To show that condition 3 of Theorem I7 is not superf- 
lous, we only need to look at the network in Example I5 
(Fig. 14). Note that the capacitor is not strongly locally 
passive. 

3. A more general version of this theorem is given in 
PO19 [3 11. 

4. A dual theorem holds for RL networks, 
5. The hypotheses. of all theorems stated so far are 

“qualitative” in nature (e.g., graph- and circuit-theoretic 
conditions). Unfortunately, it is not possible to derive any 
general complete stability theorem for networks contain- 
ing both capacitors and inductors, and/or nonreciprocal 
resistors (e.g., transistors) without introducing conditions 
of a “quantitative” nature involving element parameters. 
This is because an RLC network may be completely stable 
for certain element values but become oscillatory when 
some element value is changed. 

6. The first complete stability theorem applicable to a 
subclass of Reciprocal RLC network is given in a classic 
paper by Brayton and Moser [48]. The main theorem 
requires a certain topological matrix to havebll rank, and , 
a  certain matrix involving element parameters to be non- 
singular. These conditions are not always satisfied (the 
network in Fig. 13 is a case in point) and can be replaced 
by weaker conditions. The most recent generalization of 
this theorem is given in [36]. 

7. There is as yet no genuine completely stability theo- 
rem applicable to a nonreciprocal RLC network (say tran- 
sistor networks) having multiple equilibrium points. 

8. For networks having a unique equilibrium point, a  
complete stability theorem becomes a global-asymptotic- 
stabi& theorem. Here, the following general results can 
be stated. 

Theorem 18. Global-Asymptotic-Stability Criterion I 
The RLC network in Fig. 20 is Global& asymptoti- 

cally stable if the following conditions are satisfied: 
1. There is no loop (resp.; no cut set} formed exclu- 

sively by capacitors, inductors, and/or voltage sources 
{ resp.; current sources}. 

2. All Resistors are strong& locuZZy passive (Def. I). 
3. All Capacitors and Inductors are Reciprocal and 

strongly IocalIy passivk. 

Proof: See the proof of Theorem 9 in [31]. 

Theorem 19. Global-Asymptotic-Stability Criterion 2 
The RLC network in Fig. 20 is Globally asymptoti- 

cally.stable if the following conditions are satisfied: 
1. There is no loop {resp.; no cut set} formed exclu- 

sively by capacitors, inductors, and/or voltage sources 
{resp.; current sources}. 
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Fig. 32. An RC network whose capacitor charge qc+ - 00 as t+w. 

0 t 

Fig. 33. A  geometrical interpretation of Theorem 21 for a first order 
network: The solution x(t) is bounded by 2 exponentials having time 
constants 7ti and T-, respectively. 

2. Euery loop {resp.; cut set} containing a voltage 
source {resp.; current source} also contains a capacitor 
{ resp.; inductor}. 

3. All Resistors are strict& passive. 
4. All capacitors and inductors are Reciprocal and 

eventually strongly locally passive. 

Proof: The proof is based on a repeated use of the 
colored branch theorem, the v-shift theorem, and the i-shift 
theorem [43]. , Cl 

Remarks. 
1. In Theorem 19, the equilibrium point corresponds to 

VR =aR * =0 for all resistor voltages and currents. 
2. Condition 3 of Theorem 19 is much weaker than 

condition 2 of Theorem 18 because locally active resistors 
such as tunnel diodes, transistors, etc., are allowed in 
Theorem 19. 

3. Condition 4 of Theorem 19 is much weaker than 
condition 3 of Theorem 18 because locally active capaci- 
tors and inductors are allowed. To show that condition 4 
is reasonably sharp, consider the network shown in Fig. 
32(a). Note that all conditions of Theorem 19, except the 
eventual-strong local-passivity requirement, are satisfied. 
To show that this network is not globally asymptotically 
stable, let us combine the E= 1 V battery in series with 
the capacitor qc-uc curve in Fig. 32(b) to obtain the 
composite qc--uc curve shown in Fig. 32(c). Since uc >0, 
we have gc < 0 for all t and hence qJt)+ - cc. In fact, 
note that this network does not have an e.quilibrium point 
for E> 1. 

Theorem 20. Exponential Transient Decay Proper@ 
If %  satisfies the hypotheses of Theorem 18, then all 

solutions x(t)=(vc(t),iL(t)) and z(t>=@Jt),&(t)) 

decay at an exponential rate to the unique globally 
asymptotically stable equilibrium point x* and t*, re- 
spe:ctively. 

1:n particular, there exist 2 time constants rmin and r,, 
(0 <: 7& < r-), 

~ 

such that (see Fig. 33) 

ktie-‘/7hn < /Ix(t)-x*1] <k-e-‘/“- (7.1) 

k^ em’/‘& < /IL(t)--Z*JI <k^,e-‘I’- nun (7.2) 

where kti, k,,, iti, and iman are constants which, 
along with rtin and rm,, can be estimated from the 
con.stants y and 7 associated with h(a) and g(e) as 
defied in @ .17).39 

Proof See the Proof of Theorem 11 in [31]. 
_ 

VIII. QUALITATIVE PROPERTY 5: EXISTENCE OF A 
DC OR PERIODIC STEADY-STATE SOLUTION 

A nonautonomous network driven by T-periodic sources 
(i.e., all sources have the same fundamental frequency 
w = 277/T) may not have a periodic steady-state response 
{ 13]-,[ 181. Even if there is a periodic response, it need not 
have the same fundamental frequency as the input. In’- 
deed, Example 18 shows a network having an infinite& 
many nonisolated dc periodic (fundamental frequency = 0) 
steadly-state solutions. 

Since most realistically modeled networks satisfy the 
hypotheses of Theorems 1.5 and 16, and hence are eventu- 
ally .uniformly bounded, the weakest qualitative property 
to be sought next is whether such a network has at least 
one periodic steady-state solution when driven by T- 
periobdic sources, and if so, whether it has the same 
fund,amental frequency. The following theorems are the 
latest circuit-theoreticresults on this subject4 

Steady-State 

IJnder the same hypotheses as Theorems I5 or 16, the 
following additional properties are true: 

(a) If the RLC network in Fig. 20 contains only dc 
soulrces, then the autonomous state equations (3.14a) 
and (3.15a) have at least one equilibrium point (i.e., a 
dc steady-state solution). 

(b) If the RLC network in Fig. 20 contains only 
T-periodic sources, then the T-periodic nonuutonomous 
state equations (3.14b) and (3.15b) have at least one 

’ 

Proof: See the Proofs of Theorem 4 of [31] and Theo- 
rem jr of [25]. 0 

To show that the hypotheses of Theorem 21 are reasona- 
bly sharp, note that the diode network in Fig. 17 (Exum- 
ple ZiP) violates condition 1 of Theorem 15 and condition 2 
of Theorem 16. Indeed the steady-state solutions do not 
have the same fundamental frequency as the input. This 

39k 
nun g (u,/~s)3’211x(0) - x*II, km, A (u,/y~)~‘~IIx(‘3 - x*11, 

L, :2 (gYpll4O) - z*ll, k^,,, A (U,/y,)“*IILm - z*ll. 
A- 

%n A #;7~, and ~rtu,x = v&&. 
40For some earlier related results, see [54]. 
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Fig. 34. (a) A diode-capacitor network driven by a sinusoidal voltage 
source. (b) A ladder-type dc voltage multiplier. (c) A voltage- 
quadrupler having the smallest “output” resistance. 

network turns out to be the prototype of a small but 
important subclass of practical networks specifically de- 
signed to have a dc steady-state solution when driven by a 
single sinusoidal voltage source; namely, dc voltage muiti- 
pliers 1511. Clearly, any such network must violate at least 
one of the hypotheses of Theorem 15 or 16. Our next 
theorem gives a general graph-theoretic characterization 
of this somewhat specialized class of nonautonomous net- 
work. 

Theorem 22. Existence of Unique DC Steady-State 
Solution 

Let %  be ‘an RC network containing one sinusoidal 
voltage source of amplitude E and frequency w, linear 
passive capacitors, and diodes modeled by the continu- 
ous in-u, curve shown in Fig. 34(a), where i, = 0 for 
all us < 0, and i, + cc as us + ~0.~’ Assume the follow- 
ing topological conditions are satisfied: 

1. The voltage source and the capacitors form a tree. 
2. The voltage source and the diodes form a tree. 
3. The voltage source and the diodes form a cut set. 
4. The diodes, possibly with the voltage source, form 

a similarly directed path. k 
Conclusion. 
If the capacitors are initially uncharged, then GJL has 

a unique dc steady-state solution. In particular, each dc 
capacitor voltage in steady state is given explicitly by 

v,, =kjE I ’ (8.1) 

where kj is the number of diodes contained in the 
fundamental loop defined by capacitor Cj with respect 
to the voltage-source-diode tree (Condition 2), provided 

4’The exact shape of the ia -o. curve is irrelevant. 

the reference polarity of ucj is aligned with the diode’s 
forward direction. 

Proof See [5 11. cl 
To illustrate the application of Theorem 22, consider the 

networks shown in Fig. 34(b) and (c). Note that condi- 
tions l-4 are’ satisfied in each case and hence the dc 
steady-state voltage across each capacitor can be trivially I 
determined by inspection, as indicated in Fig. 34(b) and 
Cc). 

Note that the diodes in Theorem 21 violate condition 1 
of Theorem 1.5 and condition 2 of Theorem 16. 

IX. QUALITATIVE PROPERTY 6: UNIQUE 
STEADY-STATE RESPONSE AND SPECTRUM 

CONSERVATION 

Examples 18-20 of Section 2.5 show that even if a  
T-periodic network -has a periodic solution, it need not 
have the same fundamental frequency as the input source. 
Moreover, if a  network %  is driven by several sources 
whose frequency spectrum contains several base frequen- 
cies {w,, wz,. - * , wk}, the frequency spectrum of the solu- 
tion need not be an integer combination of these base 
frequencies-as would be the case if GJL is purely resistive 
-if GJt has subharmonic or other more exotic modes of 
steady-state solutions. The following qualitative properties 
are important to have in many practical networks: 

Definition I2. Unique Steady-State Solution 
A network %  is said to have a unique steady-state 

solution with respect to state variable t = (qc, (p,) iff any 2 
solutions t’( *) and z”( *) of ‘%  satisfy the property 

lim [[z’(t)-z”(t)ll=O (9.1) t--t52 
regardless of the initial conditions. 

Remark. For the sake of generality, Definition 12 does 
not require z’(e) and z”( .) in (9.1) to be periodic func- 
tions. It only demands all solution waveforms to tend 
toward a unique limiting waveform. 

To avoid dealing with “chaotic”’ phenomena [ 15]- [ 181, 
we shall assume that all input and output waveforms are 
of the following type: 

Definition 13. Asymptotically Almost-Periodic Function 
A continuous vector time function x( *) is said to be 

asymptotically -almost-periodic iff 

xo>=-%o)+x,o) (9.4 
where 

x0( t)+O as t+co (9.3) 
is called the transient component, and 

xap( t)_= 5 IAkejwkr (9.4) 
k=l 

wherew,,w,;*.,w,.*. w, are real frequencies (A may be 
co), is called the almost-periodic component.42 

Definition 14. Spectrum Combination43 

42Ahnost periodic function is often defined in terms of an e-translation 
number. Every almost periodic function has a ~“generalized” Fourier 
series in the form of (9.4) [42]. 

43Also called a module in the mathematical literature [42]. 
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We define the spectrum combination SXc., associated with 
the almost-periodic function (9.4) to be the set of ah 
possible integer combinations of the base ’ frequencies 
( w,, 02,’ * * ) Ok’ * . }; i.e., 

(9.5) 

where nk is any positive or negative integer. 
Roughly speaking, the spectrum combination SXc., is sim- 

ply the collection of all harmonic and intermodulation 
frequency components generated by x(t) using a .Resistive 
nonlinearity whose Taylor series has infinitely many terms. 

Definition 15. Spectrum Conservation Property 
Let z( -) be the response of the network % in Fig. 20 

when driven by u,(e). Assume that u,(a) and z( -) are 
asymptotically almost periodic. Let S,,., and Sy,c.j denote 
the spectrum combination of the steady-state waveform of 
z( 0) and u,(a), respectively. We say GJC has the spectrum- 
conservation property iff 

sz,., CS”,,.Y (9.6) 

Roughly~ speaking, a dynamic network % has the spec- 
trum-conservation property if de frequency spectrum of 
the output solution z(-) does not contain any component 
which is not a harmonic or intermodulation component of 
the input base frequencies. This rules out, therefore, any 
subharmonic or other more bizarre modes of solution. 

Definition 16. Exponential-Transient-Decay Property 
The RLC network GJL in Fig. 20 is said to have the 

exponential-transient-decay property with respect to the state 
variable z = (qc, +.) iff there exist real numbers TV, +r-, 
kti, and k,, such that any pair of solutions z’( *) and 
z”(e) of % satisfies the inequality. 

k,,Ilz’(0)-z”(O)Ile-r/Tmi. < /z’(t)-z”(t)11 

(k,,Ilz’(O)-z”(O)lle-“‘- 

(9.7) 

for all t > 0. q 
Any .network satisfying the hypotheses of Theorem 20 

clearly has the exponential-transient-decay property. 
Since the network in Fig. 19 (Example 20) satisfies all 

conditions so far stated in the preceding theorems, and 
since this network does not have a unique steady-state 
solution and does not have the spectrum conservation and 
the exponential-transient-decay property,44 it is clear that 
even stronger hypotheses would be needed to guarantee 
.these 3 properties. The following theorems are the latest 
circuit-theoretic results available on this subject: 

Theorem 23. Networks with Linear. Capacitors and In- 
ductors 

with respect to the state variable z =(qc, +L) if the 
following conditions are satisfied: 

1. There is no loop {resp.; no cut set} formed exclu- 
sively by capacitors, inductors, and/or voltage sources 
‘{resp.; current sources.} 

.2. All Capacitors and Inductors are Linear Passive, 
and Reciprocal. 

3. All internal Resistors are strongly localb passive. 
4. The source vector u,( *) is C’ and asymptotically 

almost-periodic (Definition 13). L-1 
Proof: See the proof of Theorem 6 of [25]. q 

r- 
Theorem 24. RC and RL Networks with Linear Resis- 

tors 
The conclusions of Theorem 23 holds if the following 

conditions are satisfied: 
1. There is no loop formed exclusively by capacitors 

and/or voltage sources {resp.; there is no cut set formed 
exclusively by inductors and/or current sources.} 

2.. % contains no inductors (RC networks) { resp.; no 
capacitors (RL network)}. 

3.. All internal Resistors are Linear, Passive, and 
Reciprocal. * 

4.. The source vector u,( *) is C’ and asymptotically 
almost-periodic.’ 

.Proof: See the proof of Theorem 8 of [25]. cl 

Theorem 25. RLC Networks with “Small-Signal In- 
puts 

The RLC.network % in Fig. 20 has a unique almost- 
periodic steady -state solution and the spectrum - 
conservation property with respect to the state variable 
z = f(qc, +L) if the following conditions are satisfied: 

1. There- is-no Zoop {resp.; no cut set} formed exclu- 
sively by capacitors, inductors, and/or voltage sources 
{resp.; current sources}. 

2. All capacitors and Inductors are Rectprocal and 
Strongly local& passive. 

3. All Resistors are strongly local& passive. 
4,. The time-varying component 

i.,(t) A U,(t)-ude . (9.8) 
of the source vector u,(t) about the “dc bias” udc is 
continuous, asymptotically almost -periodic, and 
]I i,(t)11 < 6 for all t > T where S is a sufficient& small 
number, and T is any real number. 

5. The Capacitor-inductor function g(o) is’ a C2 
function. 

Proof: See the proof of Theorem 10 of [25]. cl 
Remarks. 
1. Conditions 4 and 5 of Theorem 25 can be replaced 

The RLC network % in Fig. 20 has a unique almost by weaker conditions [25]. 
periodic steady-state solution, the spectrum-conservation 2. Since every periodic function is asymptotically almost 
property and the exponential-transient-decq property -periodic, we can simplify the statement of Theorems 

23-I!5 by replacing the property “asymptotically almost 
“Any 2 distinct periodic solutions z’( -) and z”( .) of % would violate periodic” by “periodic” to obtain a compact but more 

(9.7). restrictive theorem. 
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3. To show that the conditions in Theorems 23-25 are 
reasonably sharp, consider the network %  in Fig. 19 
(Example 20) again, where it has at least 2 distinct peri- 
odic solutions. Note that %  violates only Condition 2 of 
Theorem 23 (inductor is nonlinear here), Condition 2 of 
Theorem 24 (% has both a capacitor and an inductor), 
and Condition 4 of Theorem 25 (the amplitude E which 
gave the computer-solution is not sufficiently <mall). In- 
deed, by decreasing the amplitude E to a sufficiently small 
value, the computer-simulation gives only a unique 
steady-state solution, as predicted by i’%eorem 25. 

4. Criteria which guarantee unique steady-state re- 
sponse ahd the exponential-transient-decay property for 
diode-transistor networks are given in [52]. Expressed in 
terms of our formulation in Fig. 20, it can be shown that 
the criteria in [52] essentially requires the associated Resis- 
tive n-port N to be “almost” strictly locally passive. In 
other words, even though transistors are locally active 
resistors, they are “swamped” by the dissipation of the 
linear passive resistors so much so that the resulting 
“composite” n-port is “almost” locally passive. 

X. CONCLUDINGREMARKS 

Any network which exhibits either an ivassepoint or a 
finite-fotward:escape-time solution is nonphysical and mtist 
be remodeled. Local solvability is the weakest condition 
for excluding impasse points. Finite-forward-escape-time 
solutions can be excluded by imposing “eventual-strong- 
local passivity” on the capacitors and inductors, and 
“eventual passivity” on the resistors. By further imposing 
an “eventual-strong-local passivity” condition on the re- 
sistors, we can be assured that all solutions will be eventu- 
ally uniform& bounded. Since all devices have a finite 
maximum power rating, there is little loss of generality to 
require that nonlinear resistors used in device models be 
eventually strongly locally passive. After all, realistically 
modeled networks are usually eventually ‘uniformly- 
bounded. 

Whether an operating point of a  resistive network is 
observable or not in practice depends on whether its 
associated equilibrium point is “locally” asymptoticalJy sta- 
ble. This is the case if all eigenvalue of the associated 
Jacobian matrix have negative real parts. If at least one 
eigenvalue has a positive real part, the operating point is 
unobservable. We  have as yet mentioned nothing about 
the critical case when one or more eigenvalues have a zero 
real part. The analysis of this case requires examination of 
higher order partial derivatives. The most important case 
of practical interest occurs when there is a pair of pure& 
imaginary eigenvalues. In this case, a frequency-domain 
version of the Hopf Bifurcation theorem has been derived 
recently which completely characterizes the mechanism of 
“almost sinusoidal” oscillation [53]. This recent result can 
be considered as a generalized Nyquist Criterion for oscilla- 
tion for multi-loop nonlinear feedback systems. It pro- 
vides a completely rigorous foundation for the design of 
electronic sinusoidal oscillators. 

Any one of the remaining qualitative properties (com- 

plete stability, global asymptotic stability, unique steady- 
state response, etc.) may not apply even for a realistically 
modeled network simply because many physical networks 
do not have these properties..It is expected therefore that 
much stronger hypotheses will be necessary in order to 
impose such additional properties on a network. The 
hypotheses of Theorem II-25 involve one or more of the 
following increasingly stronger conditions: 

1. GJL contains only reciprocal Resistors, Inductors, and 
Capacitors. 

2. GJL contains only reciprocal resistors and capacitors 
(RC network) or reciprocal resistors and inductors (RL 
network). 

3. %  contains only strong& IO&Y passive Resistors, 
Inductors, and Capacitors,45 

Since most useful circuit elements (e.g., transistors, op 
amps., etc.) are locally active, and nonreciprocal, Theorem 
11-2.5 are presently applicable only to a rather restricted 
class of nonlinear RLC networks. Consequently, one of 
the most significant and challenging future research prob- 
lems in nonlinear dynamic networks is to replace “Re- 
ciprocity” by a condition weaker than “strong local passiv- 
ity”* so that complete stability theorems may be derived 
for transistor networks containing multiple equilibrium 
points. To dramatize the importance of solving this basic 
unsolved problem, we shall henceforth refer to it as the 
“curse of nonreciprocity.” 

APPENDIX A.l. 

Proof of Theorem 2. 

Condition 1 of Theorem 2’ allows us to choose capacitor 
voltages u, and inductor currents iL as independent varia- 
bles (without violating KCL or KVL). 

Conditions 2-5 guarantee that the current through each 
voltage-controlled 2-terminal resistor, terminal pair, or port 
in parallel with a capacitor is uniquely determined by uc. 
Likewise, the voltage across each current-controlled 2- 
terminal resistor, terminal pair, or port in series with an 
inductor is uniquely determined by i,. 

Snow let us extract all these voltage-controlled resistors 
and consider them with their parallel capacitors as ex- 
ternal elements. Similarly, extract all these current- 
controlled resistors and consider them with their series 
induc!ors is external elements. The remaining (nc +n,)- 
port N now contains only strong& locally passive resistors 
and independent sources. 

Since the voltage sources {resp.; current sources} do 
not form loops {resp.; cut sets} with capacitors, inductors, 

451n most of the theorems involving condition 3, he “strong-local- 
passiui~ ” condition can be replaced by the slightly weaker “strict-local- 
passivity” condition plus a “Cdiffeomorphic” requirement. However, in 
any closed and bounded region, these two properties are equivalent, 
except in some contrived cases. 

%Ve reiterate that “strong local passivity” is an extremely strong 
condition. For 2-terminal elements, this implies the characteristic curve 
must be monotone increasing with finite positiw slope at all points, and 
hence must tend to inftity in both directions. This should not be 
confused with the “awn&al “-strong-local-passivity condition” which 
requires mmotonicity only in far-out “don’t care” regions. 
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and/or other voltage sources {resp.; current source} it 
follows from the colored brunch theorem [30], [34] that each 
voltage source {resp.; current source} must form a cut set 
{resp.; loop} exclusively with the ports of one or more 
strongly locally passive resistors inside i’?. Hence, each 
voltage source {resp.; current source} is either in series 
{resp.; parallel} or can be shifted in series via the v-shif 
theorem {resp.; in parallel via the i-shif theorem} with the 
ports 0, one or more strongly locally passive resistors 
inside N. Hence, we can eliminate all voltage and current 
sources by combining them with the internal resistors. 
Each “composite” resistor R, (consisting of R, whose 
ports are in series with one or more voltage sources 
and/or in parallel with one or more current sources) will 
in general be described by a time-varying (if at least one 
source is time-dependent) constitutive relation [30, fig. 61: 

where yRvR. 2 AR(xR) denotes the constitutive relation of 
the original element R,. Since R, is strongly locally 
passive, and since the source vector u,(t) is bounded, each 
composite resistor R is also strongly locally passive at any 
time t. 

It follows. from Tkeprem A-3(ii) and Theorem 4 of [30] 
that at any time t, N IS described by a strictly increasing 
onto furiction:Hence, the port currents and voltages of N 
are also uniquely determined by u, and i,. 

Applying KCL to the capacitor ports and KVL to the 
inductor ports, it follows that at any time t, ic and u, are 
uniquely determined by any uc E R”c and any i, E R”L. 
Hence, y= /r(x; u,(t)) is a single-valued function for all t 
and x~ !R”. Cl 

A2. ERRATA FOR REFERENCES [31], [25] 

Errata for Reference [ 311: 
1. p. 359, equation (26) should read: 

TX) 
,,.fW>O~ for all [(x(1 > k,. 

2. p. 362, in (46), t is a superscript for e. 
3. p. 366, the statement following (80) should read: In 

this case, all solutions are bounded. 
4. p. 368, delete the “inverse” on the left of (94a). 
Errata for Reference [ 2.51: 
1. p. 536, line 3 below (35) should read: That is, w ES if 

and only if o=Z,nkwk* * - . 
2. p. 537, last sentence of Theorem B.2 should read: If 

(13) has a unique steady-state solution, then every solu- 
tion x( .) of (13) is asymptotically almost periodic, and in 
the steady state S, cS,, provided that: 5( *) is asymptoti- 
calJy periodic, or ,$( .) satisfies the hypotheses of i’%eorem 
A.2, Corollary A.l, or Corollary A.?, and further there 
exists open bounded sets fit c Iw”, 0, c R” and constant 
y > 0 such that for any solution x( *) of (1) corresponding 
to input t(e), there exists t, E IV! such that 

X(f) E&, 

for all t > t,, and 

tlV,( .x’, X”) 
--.f(X’P 5) + 

Ey,(x’, x”) 

3X ax,, f(x~,~)>yllx’-x”~~2 ’ 

for all x’, X” ED,, eEI&. 

,(36c) 

3. p. 537, insert the following after Remark 2). 3) Since 
(36b) is always true whenever (13) has a unique steady- 
state solution, this correction requires one additional con- 
dition for Theorem B.2 to be valid in general: Either [(a) 
is asymptotically periodic (not asymptotically almost peri- 
odic) or (36~) must hold. 

It can be proved that the following Theorems J-IO. and 
Corollary 3 remain valid as stated because in each case the 
additional conditional (36~) holds, 

The only statement affected by this correction is 7’heo-‘ 
rem II (p. 546). Here, either t(s) is asymptotically periodic 
“or” the unique steady state is known apriori,” is needed 
to guarantee that each x( .) is asymptotically almost peri- 
odic with S, cS,. 

4. p. 539, line 3 above (46), the last symbol should read 
lR”J-. 

5. p. 549, replace, t, in the first 3 lines (2nd column) by 
t, (3 locations). 

6. p. 549, line 5 above (A.9), replace condition ii) by 
condition iii). 
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