
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 40, NO. 10, OCTOBER 1993 145 

A Universal Circuit for Studying and 
Generating Chaos-Part 11: Strange Attractors 

Leon 0. Chua, Chai Wah Wu, Anshan Huang, and Guo-Qun Zhong 

Abstmct-In a companion paper [l], we have shown how 
Chua’s oscillator is topologically conjugate to a class of 3-D 
systems. In this paper, we will use this result to approximate 
other chaotic systems in the literature which are not necessarily 
piecewise linear. To further illustrate the complexity of Chua’s 
oscillator, we also include a gallery of the many attractors found 
in Chua’s oscillator. 

I. INTRODUCTION 

HUA’S OSCILLATOR [2] is a nonlinear electronic cir- C cuit that exhibits a wide variety of chaos and bifurcation 
phenomena. Its state equations are given by 

where 
1 G = -  
R 

and 

By a change of variables, the state equations of Chua’s oscil- 
lator (1) can be transformed into the following dimensionless 
form: 

2 = k a ( y  - II: - f(.)) 
2 = k ( X  - y + 2 )  

Jg = k (  -@7J - yz) 
f ( ~ )  = 6z + ; ( a  - b){lx + 11 - Iz - lI} 

where 
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In [3], it was proved that (1) is topologically conjugate to 
a large class of 3-D systems C = C\€o, where C is the class 
of odd-symmetric continuous three-region piecewise-linear 3- 
D vector fields, and Eo is a measure zero set. The reader 
is referred to [l] for the definition of lo. The algorithm 
for finding the parameters that make a Chua’s oscjllator 
topologically conjugate to a particular vector field in C is as 
follows: 

Algorithm 1: 
Calculate the eigenvalues ( p i ,  p h  ~ p$) and (U:  , U:, vi) 
associated with the linear and affine vector fields, respec- 
tively, of the circuit or system candidate whose attractor 
is being reproduced by Chua’s oscillator, up to a linear 
conjugacy. 
Find a set of circuit parameters 

Gb: E }  (or dimensionless parameters 
{ a ,  /3, y’ a ,  6 ,  k } )  so that the resulting eigenvalues 
p j !  vj for Chua’s oscillator satisfy pj = and 

{Cl, c2, L’ R! &I! Gu, 

uj = U;: j = 1, 2, 3.  
The formula for doing step 2 is given by 

c1 = 1 

(-) 
(E) 

where (111’ p 2 ,  p 3 ,  41’ q 2 ,  q 3 )  are the “equivalent eigenvalue 
parameters” defined as 
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11 1;  
f i  = 1 I ,1 P 3 - 9 3  --Pa+42 1 

y = -1 I - p 2 + 9 2  1 
1:1:  P l - q l  PI-91 11l3 

b = - 1 -  

k = sgn (1113) 1 

0.5 
0 

-0.5 
-1 

-1.5 > (8) 
01 

-1 .  

11. USING CHUA’S OSCILLATOR TO 
MODEL OTHER CHAOTIC SYSTEMS 

Because of the generality of Chua’s oscillator, other chaotic 
systems can be modelled using Chua’s oscillator. The reader 
is referred to [3] ,  [4] for several examples of circuits and 
systems belonging to the class C of vector fields defined above 
which have been transformed into a “qualitatively similar” 
Chua’s oscillator. These examples include the systems studied 
by Brockett [SI, Nishio [17], Ogorzalek [6], and Sparrow [7]. 
In this section we will illustrate this procedure with several 
additional examples. 

In the following examples, the system under consideration is 
either already a 3-D piecewise-linear three-segment continuous 
odd-symmetric vector field where the partition planes are 
parallel, or can be approximated by one. When the vector field 
is not piecewise-linear, we approximate it by calculating the 
Jacobian matrices at the equilibrium points and using them to 
define the linear vector field in each region. 

We then find the eigenvalues in each linear region and apply 
algorithm 1 to find the parameters for Chua’s oscillator. For 
cases where the vector field belongs to €0, we perturb the 
eigenvalues (or equivalent eigenvalue parameters) slightly to 
obtain a vector field in class C. 

2.1. Example from Arne‘odo et al. 

ferential equation: 
The systems studied in [8]-[10], satisfy the following dif- 

A + p 2 A  + p l A  + /LOA = *A3. (10) 

In [9], the cubic nonlinearity is replaced by a 3-segment 
piecewise-linear nonlinearity resulting in a vector field in C. 
We have two’cases, depending on whether the right hand side 
is +A3 or -A3 .  

Case 1 (right hand side is +A3): 

r c = y  
y = z  

- Po2 - Pi?/ - P2z = 23 

z 

2 -  
1 -  
0 -  

-1 
-2 

- 
- 

.02 

(b) 

Fig. I .  
!!!.A = 

(a) Strange attractor similar to that generated by :A’ + / 1 2 , i  + p I .A+ 
+. - I3 ;  (b) strange attractor similar to that generated by 

;I + p2.< + , l , A  + pL0.4 = -2. 

The equilibrium points are as follows: (G, 0, 0), (0. 0, 0), 
and (-*, 0, 0). From ( l l ) ,  the Jacobian matrix is 

M = [  0 0 0 

3 , L - - p g  -p1 -p2 

We choose po = 9.6, p 1  = 5 ,  and p 2  = 1 and the Jacobian 
matrix at the equilibrium points in the two outside regions is 

M = [ :  k :] 
In the inner region the Jacobian matrix at the equilibrium point 
is: 

19.2 -5  -1 

1 

-9.6 -5  -1 

As the Jacobian matrix is already in companion form, the 
corresponding equivalent eigenvalue parameters can be read 
off directly : 

= -1.0, p2 = 5, pj = -9.6 
41 = -1.0, 42 = 5 .  = 19.2 

Since p l  = 41, this vector field belongs to the set €0.  

Therefore, we add a small perturbation Spl = 0.05, and 
Sql  = -0.05 to obtain 

p;  = -0.95, p’z = 5, pi = -9.6 
y i  = -1.05, qk = 5, 4; = 19.2 
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Fig. 2. Strange attractor similar to that generated by circuit proposed by 
Shinriki et al. 

z 

Fig. 3. Strange attractor similar to that generated by circuit proposed by 
Dmitriev and Kislov. 

Substituting (13) into (5) and (8j, we obtain the following 
parameters for the corresponding Chua’s oscillator: 

. (14) 1 Cl = 1.0, 
R = 0.003298815, 
G, = -302.1891, 

L = 0.00001110714 

C2 = -313.6291, 
Ro = 0.00001073564, 

Gb = -302.0891 

The corresponding dimensionless parameters are 

} 

y = z  }. (16) 

M = [  0 0 

N = -313.6291, @ = -307.2771, 7 = -1: 
a = -0.9968661, b = -0.9965362, r = -0.966553, 

IC = -1 
(15) 

By using the parameters as above, we obtain the attractor 
shown in Fig. l(a), which is qualitatively similar to the 
attractor in Fig. l(a) of [lo].  

Case 2 (right hand side is -A3) :  
x = y  

P O X  - P l y  - P 2 Z  = -X3 - 

The equilibrium points are as follows: (m, 0, 0), (0, 0, 0), 
and (-a, 0, 0). 

From (16), the Jacobian matrix is 

Po -P1 -P2 - 3 X 2  - 

141 

(d) (e )  

Fig. 4. Five mutually exclusive subclass of circuits belonging to the class 
C’ that arc qualifatively equivalent to Chua’s oscillator. The “load” in (a), 
(b), and (c) is a nonlinear resistor, inductor, and capacitor, respectively. The 
load in (d) and (e) is a nonlinear controlled voltage source (VCVS or CCVS) 
or current source (VCCS or CCCS), respectively. 

res N 3 
Fig. 5. 
into four mutually exclusive groups. The linear four-port 
resistive elements. 

Circuits belonging to the subclass in Fig. 4(a) can be partitioned 
r s  contains only 

We choose po = -5.5, p1 = 3.5, and p2 = 1.1, and in 
the two outside regions the Jacobian matrix at the equilibrium 
points is 

M = [ :  0 1 0  1 1 .  

-11 -3.5 -1.1 

In the inner region, the Jacobian matrix at the equilibrium 
point is 

5.5 -3.5 -1.1 
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TABLE I 
FAMILY OF ALL DISTINCT CIRCUITS BELONGING TO THE CLASS c' 
MADE OF TWO LINEAR CAPACITORS, O N E  LINEAR INDUCTOR, ONE 

NONLINEAR RESISTOR, AND 71 LINEAR RESISTORS I T  = 0 .  1, OR 2 (PART I) 
n - 0  

4 5 6 

n=l 

1.1 1.2 1.3 1.4 

2.1 2.2 2.3 2.4 

TABLE 1 
(PART 11) 

$maam 3.1 3.2 4.1 5.1 

5.2 6.1 

ma" 1.1.1 1.1.2 1.1.3 1.1.4 

1.1.5 1.2.1 1.2.2 1.2.3 

The equivalent eigenvalue parameters are given by 

} (17) 

} (18) 

p1 = -1.1, p2 = 3.5, p3 = 5.5 
41 = -1.1, y2 = 3.5, y j  = -11.0 

Now, we add a small perturbation 6pl = 0.055, and 6ql = 
-0.055 to obtain 

p i  = -1.045. = 3.5, p;  = 5.5 
qi = -1.155, yk = 3.5, y i  = -11.0 

Substituting ( 1  8) into (5) and (8), we obtain the following 
parameters for the equivalent Chua's oscillator: 

c1 = 1.0. C2 = 119.4383. 
R = -0.007559785, Ro =0.000061316. 

G, = 133.3239, Gb = 133.4339 
L = 0.0000553641 

TABLE I 
(PART In) 

&h rselh 

1.2.4 1.3.1 1.3.2 1.4.1 

2.1.3 2.1.4 2.1.5 2.1.6 

2.2.1 2.2.2 2.2.3 2.3.1 

2.3.2 2.4.1 2.4.2 3.1.1 

TABLE I 
(PART IV) 

3.1.2 3.1.3 3.1.4 3.1.5 

a @ m a  3.1.6 3.2.1 3.2.2 4.1.1 

rR 5.1.6 *5.1i3 5.2.1 ~ ~ 5.2.2 ~ 5.2.3 

The corresponding dimensionless parameters are: 

O, = -1.007900, b = -1.008732, T = -1.10751, . 
Q = 119.4383, @ = 123.2917, = -0.1, 1 IC=-1 

(20) 
By using the dimensionless parameters above, we obtain the 
attractor shown in Fig. l(b), which is qualitatively similar to 
the attractor in Fig. l(b) of [lo]. 
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TABLE I 
(PART V) 

5.2.4 6.1.1 6.1.2 6.1.3 

6.1.4 

TABLE I1 
PARAMETER VALUES OF ATTRACTORS IN CHUA'S OSCILLATOR (PART I) 

TABLE I1 
(PART 11) 

2 1  -1 $98979 

21 4 086P5 

25 - 7 5  0 

26 15 6 

27 ~ i 5  0 

:5 0 

11 0 i0921 

9 J5liYOR193 

749 

linear elements and two nonlinear conductances. The nonlin- 
ear conductances' 7)-i characteristics are described by cubic 
polynomials. The negative nonlinear conductance resembles 
the v-i characteristic of Chua's diode used in Chua's circuit, 
in that it can be approximated by a 3-segment piecewise- 
linear nonlinearity. However, in the parameter region of the 
chaotic attractor in [ l l] ,  [12] which we would like to mimic, 
the chaotic attractor lies in a region of the phase space 
where the negative nonlinear conductance is monotonically 
decreasing. Thus the negative conductance is used as a purely 
active device. We can then approximate the negative non- 
linear conductance by a linear negative conductance in the 
region of interest. The positive nonlinear conductance can be 
approximated by a 3-segment piecewise-linear characteristic. 
After these approximations are made we obtain a circuit whose 
underlying vector field belongs to the class C. 

The state equations are written as 

At the quilibrium point (0, 0, 0) the Jacobian matrix is 

and at the equilibrium points (43, kjj, &tzj the Jacobian 
matrix is 

where 

When we choose C = O.lpF,  L = i H ,  CO = 4.7nF, 

and R1 = & = 
G2 = 3.813851pS, a1 = 11 x 
u3 = 5.7210 x lop6, b3 = 4.76731 x 
38kR, then [ 1 4 5 r . 3 2  3245.83 

bl = 1.52554 x 

0 
J (0 ,  0; 0) = 152.55 -190.69 

6 

2.2. Examples from Shinriki et al. 
In the system proposed by Shinriki et al. [ l l ]  and subse- 

quently studied by Freire et al. [12], the circuit consists of four L A 

J(*z:  kty, ktz) 

1985.461 -2023.5993 
0 

-29118.6428 42243.846 =I 0 6 
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The corresponding eigenvalues are 

= 14.5855, 
~2 = -0.108453 + j7.73824: 
~3 = -0.108453 - j7.73824 

= -31.7699! 
~2 = 0.313848 + j7.40907: 
~3 = 0.313848 - j7.40907 

Converting (28) into equivalent eigenvalue parameters and 
using ( 5 )  and (8), we obtain the following parameters for the 
equivalent Chua’ s oscillator: 

1 
} 

G1 = 1.0. C2 = 0.0700946, L = 0.089575 
R0 = 0.882183, 
Gb = 32.34223 

R = -1.381763, 
G, = -13.16857, 

(29) 
and the dimensionless parameters 

U = 18.19584, b = -44.6893, 7 = 10.3248, . 

(30) 
By using the parameters above, we obtain the attractor shown 
in Fig. 2, which is qualitatively similar to the corresponding 
attractor given in Fig. 15(a) of [12]. 

Q = 0.0700946, p = 1.49404, = -0.953867, 

I C =  -1 

2.3. Example from Dmitriev and Kislov 

In the oscillator system studied in [ 131-[ 151, the nonlinearity 
is a cubic polynomial which becomes constant in an outer 
region. This can again be approximated by a piecewise-linear 
function if we ignore the outer region. 

The state equations are 

x = y  
y = - x - s y + z  
i = y(F(x) - 2 )  - ay 

where 

1 0.528a if x < -1.2 
F ( z )  = az(1- z2) if - 1.2 5 z 5 1.2 . 

-0.528a if z > 1.2 

y = O  
-z - s y +  z = 0 

r(F(3:) - z )  - (Ty = 0 

{ 
The equilibrium points are given by 

1) when z < -1.2, then 
y = O  

-x - 6y+ z = 0 
y(0.528a - Z )  - ay = 0 

so we have 
x = 0.528a (a = < & = -2.2727) 
? / = 0  
z = 0.528a 

2) when -1.2 < x < 1.2, then 
y = o  

-z - s y +  z = 0 
y ( a z ( 1 -  2)  - z )  - ffy = 0 

(34) 

therefore, we have 3: = 0, z = f a, for cy 2 1. 

The three equilibrium points are (m, 0, m), 
(0, 0, O), and (-e! 0, -e). 

y = o  
-z - sy + z = 0 

da-l 

3) when z > 1.2 

(37) 
y(-0.528 - 2) - = 0 

so we have 

y = 0  

x = -0.528a ( a  = & <A = -2.2727) 

z = - 0 . 5 2 8 ~ ~  
(38) 

We will consider values of a where there are no equilibrium 
points in the outer regions (1.1 > 1.2). From (31), at the origin 
the Jacobian matrix is 

At the two other equilibrium points, the Jacobian matrix is 
r 0 1 0 1  

-1 Mk = 

Let a = 16, 6 = 0.43, (T = 0.71, and y = 0.1. We have 

: I  1 

[ O  -2.9 -0.71 -0.1 
M* = -1 -0.43 

with eigenvalues: 
V I  = -1.18562: ~2 = 0.3278 + j1.5566, 

~3 = 0.3278 - j1.5566 (39) 

and 

1 
M O =  [pl -0.43 : ] 

1.6 -0.71 -0.1 

with eigenvalues 

pi = 0.61184, p2 = -0.57095 + j1.45797, 
p3 = -0.57095 - j1.45797. (40) 

Therefore, the corresponding equivalent eigenvalue parameters 
are given by 

}. (41) 

}. (42) 

pi = -0.53006, p2 = 1.7530, p3 = 1.500024 
41 = -0.53002, 42 = 1.753164, 43 = -3.00016 

Again, we add a small perturbation, Spl  = 0.00265, 641 = 
-0.00265 to obtain 

p‘, = -0.52741, p i  = 1.7530, p i  = 1.500024 
4; = -0.53267, 4: = 1.753164, 4; = -3.00016 

These equivalent eigenvalues correspond to the following set 
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Fig. 6.  Attractors: co lor  plates 1-9. 
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34 

25 26 27 

Fig. 8. Attractors: color plates 19-27. 
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31 33 

34 35 36 

Fig. 9. Attractors: color plates 28-36. 
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System in C 

Brockett (51 

Ogonalek [6] 

Sparrow [7] 

Dmitriev 

and Kirlov 1131 

Arneodo [9.10] 

Ameodo 19,101 

Nishio D71 

A0 Eigenvalues A Eigenvalues b Init. cond. Lyap. Exp. 

of Ag of A 

0.7220 ( : : -1.6111 ( :4 ) ) 
1.404 0.102 

-1.543 0 
-0.8610 f 1.32363 0.3055 * 1.4633.1 

-3.6 -1.25 -1 -0.736 -1.102 

-0.523 0.291 

-5.4027f6.28813 ( -4:3.03) -2543 -0.736 -5.29 

-0.854 0.204 

1.8 -1.25 -1 

-1 1 0 
5.8054 

-1 1 0 

( f 0  1" :2) 

-1 1 0 
-3.0328 4.4243 

-5.1249 ( -3i.03 :2 ) 0.0625 f 2.5763 

0 

3.504 -3.204 0.0164f 1.76053 ( ,,",,, :l ) -3.7122* 4.69763 ( j 6 8 )  o'086 

0.046 0.132 

-1.1856 ( :5 ) -2.213 0 
-0.5709 f 1.45803 

1.6 -0.71 -0.1 -2.9 -0.71 -0.1 
0.3278 f 1.55663 

0.546 -0.662 

0.819 0.3 ( :  : : )  ) 1.299 0 ( -1,4301 f 2.87673 
-5.212 -1.3 

0.625 0.16 

0.481 b : ) -2.0355 ( 1:,5) 0 

-11 -3.5 -1.1 1.472 

- 1.6067 

0.3034f 2.42553 
19.2 -5 -1 -9.6 -5 -1 

0.9884 

-1.0442 f 2.1152j 

0.5 0 -1 -10 0 -1 [ ,oj :l - A , ~ )  -0.284f 1.13062 

( 0.4677f 2,27713 
-1.36 

1.046 0.082 

5.5 -3.5 -1.1 

( 1:5 ) -0.839 
0.3679 -10.9656 

0 
0.1328 * 0.94573 

10.5 0.118 -7.25 

r- Brockett 

Eigenvalues 

in Do 

a 3 i 

o b k  
Corresponding 

0.7265 

-0.8377 f 31.3275 

52.566 54.813 -1.00264 

-1,018 -1.020 -1 

Sparrow 

Dmitriev 

and Kislov 

Ameodo 

Ameodo 

Nishio 

Eigenvalues f Init. Cond. 

in D+ 

-0.748 

0.019 

0.768 

-1.046 -52.566 0 

53.66 2.4245 52.566 

-1.6808 

0.3134 f 31.484 

TABLE AI1 

1.2039 

-1.1560f 33,0299 

-1.6476 

0.3327f32.5158 

3768.076 3776.806 -1.056794 

-1.000279 -1.000282 -1 

-313.1022 -306.7586 -0.9996019 

-0.9968621 -0.9965319 -1 

1.871269 

-0.000437 

-1,873547 

0.9212 

0.008536 

-0.90295 

-1.1 -3768.1 0 

3769.7 -1384.4 3768.1 

-2.5957 

0.7382 * 33.3198 

-1.0859 313.1022 0 

-311.9231 -26,8860 -313.1022 

1.9136 

-1.4995 f32.9722 

0 -0.95 ) I -0.00215 
-1,0108 1 1.1650 1 [ 

-0.0125 353.79 0 

-353.48 1056.9 -353.79 0.9472 
0.0027 f 30.5025 -1,0901 f 31.2644 

-353.79 -352.543 -1.00267 

-0.997166 -0.991138 -1 

0.8933 

-0.9157f j1.9023 

0.1213 

-0.0936 f 30.3726 

118.0615 121.8824 -0.9971798 

-1.00797 -1.008807 -1 

-0.03258462 1.207525 -1,098891 

-6.058885 -112.264 1 

0 -0.635 1 1 -0.0033 
-1.0162 1 1.4865 1 ( 

-0.0199 316.785 0 
0.0084* j0.5973 -1.2530* 31.5796 

-316,7844 627.2792 -316.7848 0.632 

-316.7848 -315.445 -0.9996863 

-0.9968445 -0.9967806 -1 

1.2255 

0.0056 

-1.239 

0.63069 

3.21152 

4.1 5898 

-1.846 

0.4045 f j2.0373 

-24.6812 -0,1979 -0.0326 

-6.3745 0.0326 0 

-3.6141 

0.0438 f 30.3117 

of perturbed eigenvalues: 
pi = 0.612122, 
p$ = -0.569766 + j1.45805. 
/I,$ = -0.569766 - j1.45805 
U ;  = -1.18641, 
V ;  = 0.326871 + j1.55625, 
U: = 0.326871 - ,Jl.55625 

0.081 

-1.07 

0.056 

-1.063 

0.083 

- 1.084 

-2.39 

(43) 

Substituting (42) into ( 5 )  and (8), we obtain the following 
parameters for Chua's oscillator: 

c1 = 1.0. 
R = -5.5741e - 4. 

C, = 3768.076, 
R, = 1.5597e - 7 ,  } (44) G, = 1794.501, Gb 11794.506 . 

L = 3.099916e - 7, 
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3 

2 

1 

).I 0- 

1 

2 

3 
3 

2 01 

x1 X 

Fig. A l .  

Ogonalek 

3 

2 -4 Y 
X l  X 

Fig. A2. 

The corresponding dimensionless parameters are 

I Q = 3768.076, = 3776.806, = -1.056794, 

k =  -1 
= -1.000279. b = -1.000282. ‘T = 0.4761051, . 

(45) 
By using the dimensionless parameters above, we obtain the 
attractor shown in Fig. 3. 

111. FAMILY c* OF CIRCUITS QUALITATIVELY 
EQUIVALENT TO CHUA’S OSCILLATOR 

Let us denote by C* the family of all piecewise-linear 
circuits which can be transformed to Chua’s oscillator by 
the procedure illustrated in the preceding section 11. Since 
in general a small perturbation in the eigenvalue parameters 
associated with a circuit belonging to C* may be needed to 
establish topological conjugacy with Chua’s oscillator, we 
can only claim the qualitative properties of its dynamics 
are similar to Chua’s oscillator, a fact guaranteed by the 
continuous dependence of the solutions of the associated 
ODE on initial conditions and parameters. To emphasize this 
“weaker” concept of equivalence, we will henceforth define 
any circuit belonging to the class C* as qualitatively equivalent 
to Chua’s oscillator. If a particular circuit belonging to C* 

requires no perturbation in the eigenvalue Parameters, then it 
is said to be topologically conjugate to Chua’s oscillator. 

The family of all circuits belonging to the class C* can 
be classified into one of the five subclasses shown in Fig. 
4, where the only nonlinear element had been extracted as a 
“load” connected across a linear time-invariant one-port N .  
Each two-terminal nonlinear element in Fig. 4(a)-(c) and each 
nonlinear controlled source in Fig. 4(d) and (e) is characterized 
by an odd-symmetric three-segment continuous piecewise- 
linear function. The one-port N may contain only linear 
time-invariant elements, possibly multiterminal (e.g., linear 
controlled sources, multi-port transformers, etc. j and nonre- 
ciprocal (e.g., gyrators, circulators, etc.). Since the number of 
circuit elements inside N can be arbitrarily large, and since 
these elements can be interconnected in a great variety of 
distinct topologies, the universe of all nonlinear circuits which 
are qualitatively equivalent to Chua’s oscillator is enormously 
large. For example, the subclass in Fig. 4(aj can be further 
classified into four groups as shown in Fig. 5 ,  where N,,, is 
a resistive four-port. 

If the elements inside the four-port N consist of only 
two-terminal linear resistors, then in principle, we can apply 
the classic star-mesh transfomzation to reduce the number of 
resistors considerably by eliminating all internal nodes of the 
four-port. In this special case, it is possible to enumerate sys- 
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tematically all distinct members of this subclass. For example, IV. A GALLERY OF ATTRACTORS FROM CHUA’S OSCILLATOR 
Table 1 enumerates all such circuits belonging to group (d) 
in Fig. 5 where the resistive four-port N,,, contains only 
7~ = 0, 1, or 2 linear two-terminal resistors and connecting 
wires. The number of circuits becomes large when n is greater 
than 2, and in [3], it was shown that 71. = 2 is sufficient for 
the resulting circuit to be canonical. 

Each circuit in Table I is coded by a decimal numbering 
in order to identify its “genealogy.” Each integer added 
corresponds to adding a linear resistor to an earlier generated 
circuit. For example, the circuit coded by the number (1.1.3) 
is obtained by adding a linear resistor to the circuit coded 
with ( 1 . 1 ) .  Since five such distinct circuits are possible, the 
parent circuit (1.1) gives rise to five off-springs ( l . l . l ) ,  (1.1.2), 
(1.1.3), ( I .  1.4), and (1.1.5). Hence, each newly generated 
circuit can be interpreted as mathematically equivalent to an 
“unfoldipg” of its parent circuit. Note that for the last four 
circuits in Table I for the case n = 0, two capacitors in series, 
or in parallel, can be replaced by one capacitor, resulting in a 
simpler circuit. However, these circuits can spawn new circuits 
by adding a new linear resistor and therefore they are listed 
in Table I in their “unreduced” form. In addition, note that 
some circuits can have more than one parent circuit. In Table 
I, Chua’s circuit has the code 3.2 and Chua’s oscillator has 
the code 3.2.2. 

In this section, we give a gallery of color pictures of 
attractors found in Chua’s oscillator (see Figs. 6-10). For 
pedagogical reasons, some of the attractors are shown in 
several different perspectives. The dimensionless parameter 
values are given in Table 11. The attractors were generated 
by integrating the differential equations using a fourth-order 
Runge-Kutta method and allowing the transient to settle. The 
initial conditions are chosen near the origin, except for cases 
where there are several nontrivial coexisting attractors in the 
state space, in which case, the initial conditions are chosen 
in the basin of attraction of the attractor. For example, the 
initial conditions for color plate 26 is xo = 1.8, = 0.18, 
and zo = -1.88. 

The three Lyapunov exponents corresponding to the attrac- 
tor, which are computed numerically and listed in decreasing 
order in Table 11, form a measure of the rate of divergence of 
trajectories starting from neighboring initial conditions. The 
Lyapunov exponents can also tell us the type of attractor to 
which they correspond. For example, one of the Lyapunov 
exponent of a chaotic attractor is positive which implies 
sensitive dependence on initial conditions, while a limit cycle 
has two negative Lyapunov exponents and one zero Lyapunov 
exponent [16]. It has also been shown by Haken that for 
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systems with a finite number of equilibrium points, any 
bounded attractor which is not an equilibrium point must has 
one Lyapunov exponent equal to zero [ 161. 

V. ABC: SOFTWARE FOR SIMULATING CHUA’S OSCILLATOR 

For readers who are interested in experimenting with Chua’s 
oscillator, there is a PC-based software package available 
called Adventures in Bifurcation and Chaos (ABC). This is 
a continuously evolving program written by M. P. Kennedy 
and C. W. Wu and future versions of the software will be 
maintained by M. P. Kennedy. Interested readers can send a 
request for a complimentary copy of ABC to 

Dr. Michael Peter Kennedy 
Department of Electronic and Electrical Engineering 
Room 143 
University College Dublin 
Dublin 4, Ireland 

VI. CONCLUDING REMARKS 

Beginners studying chaos are often discouraged by the 
immense literature that has accumulated over the years on 
this subject. Many are frustrated if not intimidated by the 
unproductive chores of deciphering the numerous jargons. 
notations, and symbols from different disciplines, before the 
essence of a particular paper can extracted. This dilemma had 

been further exacerbated by the tedious task of studying many 
different papers, each one covering some limited aspect of bi- 
furcation phenomena, in order to obtain a broad understanding 
of chaos. This two-part paper has demonstrated, via numerous 
experimental results, that since Chua’s oscillator can exhibit 
virtually all the reported bifurcation and chaotic phenomena 
observed from physical systems from different disciplines, it 
suffices to study a simple system in-depth. In particular, the 
special case Ro = 0 (Chua’s circuit) is adequate for beginners 
[IS]. However, it must be unfolded (by adding a linear 
resistor no in this case) in order to exploit its full potentials. 
At the very least, this unfolding has provided a uniJcntian 
of many previous publications [5] - [  151. e.g., of seemingly 
unrelated systems from different disciplines. This unification 
is significant because it is no longer necessary to study the 
members of C as distinct systems since one theory now covers 
them all. In particular, no new bifurcation phenomena or 
surprises can be expected by studying the other systems in C. 
This paper therefore will help future researchers from carrying 
out unproductive investigations of future new systems which 
are qualitative similar to the dynamics of Chua’s oscillator. 

APPENDIX 

For the convenience of the reader, we show in this Appen- 
dix, in tabular format (see Tables AI and AII), the parameters 
of several systems in C and the parameters of corresponding 
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Chua’s oscillators that generate qualitatively similar behaviors. 
We also give the linear equivalency T that transforms orbits 
of the Chua’s oscillator to orbits of the corresponding system 
in C. The mapping will not be exact for cases where a 
small perturbation is added to the eigenvalues parameters to 
generate the corresponding Chua’s oscillator. The Lyapunov 
exponents of the system in C, and the corresponding Chua’s 
oscillator should match except for a positive scaling constant, 
except for the cases where a small perturbation is added 
to the eigenvalues parameters, in which case, the Lyapunov 
exponents of the two systems are slightly mismatched. The 
same remark holds for the eigenvalues in each linear region. 

Finally, we show 3-D plots of the attractor of these systems 
in C and the attractor in the corresponding Chua’s oscillator 
(see Figs. AI-A7). The attractor of a system in C is shown on 
the left, and the corresponding attractor in Chua’s oscillator 
is shown on the right. 

Each member of C can be written as 

C1. C2. G. R,, L ,  G, . Gb, E (after perturbing the eigenvalue 
parameters if neccessary) whose state equations are given by 

These two systems are related by a linear conjugacy as 
follows [3] :  

. = T ( i )  

where T = K-’K and (A7), which is shown at the bottom 
of this page, and 

where 
In terms of the dimensionless form 

dS A =  [zi: zz b = [a:j. (A4) - d r  = ka(7j - 2  - f ( 2 ) )  
(131 (L32 CL33 - 2 = k ( : f - i j + Z )  

- ;; = q - p i j  - yZ) 
f ( 2 )  

For each system in C, we use Algorithm 
the corresponding Chua’s oscillator with circuit parameters 

1 to construct 
= h2 + ; (a  - b){l2 + 11 - 12 - lI} 
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we have a topological equivalency given by 

x=T!) 

where T = K-lK, K is the same as before (see (Al l )  on 
the previous page), and 

K =  ( -kQ(l  + b)  kru :) (A12) 
1 0 

(Q(l + b ) ) 2  + a - c Y * ( 1 +  b )  - a N 
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