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A Universal Circuit for Studying and 
Generating Chaos-Part I: Routes 

Leon 0. Chua, Chai Wah Wu, Anshan Huang, and Guo-Qun 

Abstract-In this introductory tutorial paper, we demonstrate 
the generality of Chua's oscillator in generating chaos and bifur- 
cation phenomena by electronic laboratory experiments which 
illustrate the standard routes to chaos, and by giving a result 
which shows that Chua's oscillator can generate the same qual- 
itative behavior as any member of a 21-parameter family C of 
continuous, odd-symmetric, piecewise-linear vector field in R3. 
This result is of fundamental importance because it unifies many 
previously published papers on chaotic circuits and systems (e.g. 
examples from Brockett, Sparrow, Arnkodo, Nishio, Ogorzalek, 
etc.) under one umbrella, thereby obviating the need to analyze 
these circuits and systems as separate and unrelated systems. 
Indeed, every bifurcation and chaotic phenomena exhibited by 
any member of the family C is also exhibited by this universal 
circuit. In a companion paper [l], we show how the generality 
of Chua's oscillator can be used to approximate other chaotic 
systems in the literature which are not necessarily piecewise- 
linear. 

I. INTRODUCTION 

HUA'S circuit (Fig. 1) is a nonlinear electronic circuit C that is the object of much scientific research activities. 
This circuit contains four linear elements (two capacitors, one 
inductor, and one resistor) and a nonlinear resistor, called 
Chua's diode [ 2 ] ,  which can be built using off-the-shelf op- 
amps. 

Since Chua's circuit is endowed with an unusually rich 
repertoire of nonlinear dynamical phenomena, it has become 
a universal paradigm for chaos. By adding a linear resistor 
in series with the inductor, we obtain Chua's oscillator [3], 
shown in Fig. 2. This circuit can generate even more chaotic 
phenomena and is canonical in the sense that its vector 
field is topologically conjugate (i.e. qualitatively equivalent) 
to a large class of 3-D vector fields. In this tutorial paper, 
we will illustrate some of the phenomena that occur in 
Chua's oscillator. In particular, we show some classic chaotic 
phenomena that have been found, such as period doubling, 
intermittency, and torus breakdown. We will adopt Madan's 
terminology [4, Editorial] in describing Chua's oscillator and 
its attractors. 
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The state equations of Chua's oscillator are: 
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region. A typical w - i characteristic of N R  is shown in Fig. 
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Fig. 3 .  Typical I’V characteristic of Chua’s diode. 

11. EXPERIMENTAL CHAOS FROM CHUA’S OSCILLATOR 

For a fixed set of parameters, the Chua’s oscillator equations 
(1) define a dynamical system which behaves in a certain 
manner. For example, the trajectories could converge to an 
equilibrium point, a limit cycle, or a strange attractor. An 
equilibrium point could be stable or unstable. We are interested 
in changes in the qualitative behavior of the system, or 
bifurcations, as parameters are varied. In this section, we 
demonstrate experimentally several chaotic phenomena and 
bifurcations occurring in Chua’s oscillator: 

1. Period-doubling route to chaos 
2. intermittency route to chaos 
3. period-adding bifurcations 
4. attractors in Chua’s oscillator whose only active element 

is a linear resistor 
5.  torus breakdown route to chaos. 
Several visual aids that we will utilize to visualize chaos 

1. Time-waveform of state variables 
2. phase portrait of trajectories 
3. PoincarC or first-return maps 
4. bifurcation diagrams. 

and bifurcation phenomena are the following: 

2.1. Period-Doubling Route to Chaos 

a parameter and the following values are fixed: 
In our experimental setup, the resistor value R is varied as 

C1 = 5.75nF: Cz = 21.32nF, L = 12mH, Ro = 30.860 

G, = -0.879mS. Gb = -0.4124mS, E = 1V 

While any circuit which realizes the nonlinear 71 - i character- 
istic of Chua’s diode can be used in the experiments reported 
here, we use the dual op-amp circuit of Kennedy [2]. 

In this route to chaos, an equilibrium point loses stability 
and a stable limit cycle emerges through an Andronov-Hopf 
bifurcation’ when the resistance R is decreased. As the value 
of R is further decreased, the stable limit cycle eventually 
loses stability, and a stable limit cycle of approximately twice 
the period emerges, which we shall refer to as a period-2 
limit cycle. As R is decreased further, this period-2 limit 

’ The Andronov-Hopf bifurcation is proved for sufficiently smooth systems 
and, therefore, doer not apply strictly to piecewise-linear systems. However, 
all physical implementations of the piecewise-linear characteristic of the 
nonlinear resistor is in fact smooth. 

cycle in turn loses stability, and a stable period-4 limit cycle 
appears. This bifurcation occurs infinitely many times at 
ever-decreasing intervals of resistance parameter range which 
converges at a geometric rate to a limit (bifurcation point) 
at which point chaos is observed. This is illustrated in Fig. 
4(a)-(e), where we start with a stable equilibrium point (Fig. 
4(a)), and followed by a stable limit cycle (Fig. 4(b)), a stable 
period-2 limit cycle (Fig. 4(c)), a stable period-4 limit cycle 
(Fig. 4(d)) and finally a spiral Chua’s attractor (Fig. 4(e)). 

2.2. Intermittency Route to Chaos 

Using the same parameters as in the previous section, when 
R is decreased further beyond our first chaotic phenomenon 
arising from period-doubling, we find a range of parameter 
values where a stable period-3 limit cycle is observed. This is 
where an intermittency route to chaos can be found. Intermit- 
tency is the phenomenon where the signal is virtually periodic 
except for some irregular (unpredictable) bursts. In other 
words, we have intermittently periodic behavior and irregular 
aperiodic behavior. Starting from the region of parameters 
where a stable period-3 limit cycle exists, as we increase the 
parameter R, a stable period-3 cycle emerges with an unstable 
period-3 cycle2 and disappears through a bifurcation process 
called tangent bifurcation. However, a “ghost” of the period- 
3 cycle still remains, and the trajectory behaves for most 
of the time as if it was approaching a period-3 limit cycle, 
and intermittent behavior is observed. This is referred to as 
intermittency of type 1 [ 5 ] .  Figs. 5(a) and (b) depict a phase 
portrait in the VC, - wc2 plane and the time waveform of ‘ucl 

of a stable period-3 limit cycle. Figs. 6(a) and (b) show the 
phase portrait and time waveform of intermittent chaos. We 
see in Fig. 6(b) how the time waveform is nearly periodic of 
period 3 except for the appearance of irregular bursts. 

2.3. Period-Adding Bifurcations 

In this section, we demonstrate the phenomenon of period 
adding, where windows of consecutive periods are separated 
by regions of chaos3 In other words, as the parameter is varied, 
we obtain a stable period-n orbit, n = 1, 2,. . . followed by a 
region of chaos, then a stable period-(n + 1) orbit, followed 
by chaos, and then a period-(n + 2) orbit and so on. Again, 
we use the same parameters as before. We have two cases 
here. The first case is in the spiral Chua’s attractor region, 
where a period-3 and period-4 limit cycle are shown in Fig. 
5(a) and 7(a), respectively. The second case is in the double- 
scroll Chua’s attractor region, shown in Fig. 7(b). We show in 
Fig. 7(c)-(h) limit cycles in order of decreasing parameter R. 
Between every two neighboring region of stable limit cycles, 
we find a double-scroll Chua’s attractor. As we decrease R 
further, we reach a point where a large outer limit cycle is 
observed (Fig. 7(i)). This is due to the fact that in any physical 
implementation of the Chua’s diode, the v - i characteristic 

2The unstable limit cycle is not observable experimentally but can be shown 

3The period-adding phenomenon is first observed in a physical system in 
to exist using numerical methods. 

[61. 
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(4 (e) 

Fig. 4. Phase portraits in f y S l  - P ( ' ~  plane of a typical period-doubling sequence. C1 = 3.7571F. C1 = 21.32ttF, L = 12mH, R" = 30.86f2, 
G ,  = -O.S'iSrnS, Gh = -0.4124tt?S and E = lt.: (a) Equilibrium point, R > 1.55Sk12; (b) period-I limit cycle, X = 1.558L.Cl; (c) period-2 limit 
cycle, R = 1.5161,(2; (d) period-4 limit cycle, R = 1.308k11; (e) spiral Chua's attractor. R = 1.503kfl.  

(b) (b) 

Fig. 5. Intermittency near a period-3 limit cycle. Parameters are the same 
as in Fig. 4 except R: (a) Phase portraits in i r ~ ~  - tic'g plane of a period-3 
limit cycle, R = 1..501kf2; (b) time waveform of t:cl of a period-3 limit 
cycle, R = 1.501kIl. 

Fig. 6. (a) Intermittency of type I. Parameters are the same as in Fig. 4 
except R. Phase portraits in ('cy1 - y2 plane of intermittency near a period-3 
window, R = 1.502X.Q; (b) time waveform of I Y ~ ~  of intermittency near a 
period-3 window, R = 1.502kll. 

must be eventually passive, even though it c m  be active in 
the region of interest. The limit cycle goes through a region in 
which the II - i characteristic is locally passive (i.e., the slope 
is positive). In a computer simulation which does not take this 
into account, the trajectory will simply diverge to infinity. 

A computer-generated bifurcation diagram which plots VC, 

versus the parameter G = 1/R is shown in Fig. 8. We can 

see the periodic windows of increasing periodicity between 
regions of chaotic bd-". 

2.4. Attractors in Chua's Oscillator Whose 
onl)l Active Element is  Linear 

In [7] and [SI, Chua's circuit contains only one nonlinear 
element, which is also the only active element in the circuit. 
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Fig. 7. Period-adding sequence. Parameters are the same as in Fig. 4 except R: (a) Period-4 limit cycle, R = 1.493kI): (b) double scroll Chua's attractor, 
R = 1.476kO; (c) 5 - 3 window, R = 1.460kc2; (d) 4 - 4 window, R = 1.449X.!!: (e) 3 - 3 window, R = 1.4301.!1; (tj 3 - 2 window, R = 1.421kfl;  
(g) 2 - 2 window, R = 1.4021.fL; (h) 2 - 1 window, R = 1.394k0: ( i )  outer periodic attractor, R = 1.3S91L.12. 

Bifurcation diagram of Chua's Oscillator 
3.5, , I I I , , I , 

1 
-0; 1 
-1.5 '  ' ' ' ' ' ' ' 1 
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G 

Fig. 8. Bifurcation diagram of Chua's oscillator showing period-doubling, 
period-3 window, and period adding phenomenon. 

An active element is needed to pump energy into an otherwise 
purely dissipative system, in order for self-excited oscillations 
to occur. In this section we show a special case of Chua's 
oscillator where the nonlinear resistor is passive and locally 
passive (i.e., the U-i characteristic passes through the origin 
and is strictly monotone increasing), and the only active 

element is a linear resistor. In our experimental setup, the 
following parameters are fixed: 

The implementation of the nonlinear resistor is shown in Fig. 
9(a) and the implementation of the negative linear resistor is 
shown in Fig. 9(b). 

Here, we show three attractors for different parameter values 
from a physical circuit (Fig. lO(a)-(c)) and from computer 
simulations (Fig. 11 (a)-(c)). 

2.5. Torus Breakdown Route to Chum 

In the Ruelle-Takens-Newhouse route to chaos, the sys- 
tem undergoes several Andronov-Hopf bifurcations. After two 
Andronov-Hopf bifurcations, we obtain a toroidal attractor. 
At the third Andronov-Hopf bifurcation, chaos is likely to 
appear. Experimentally, this appears as a toroidal attractor 
bifurcating into a chaotic attractor [SI. We have obtained for 
certain parameter values a similar scenario in Chua's oscillator. 
In each of the following attractors, we will show both the phase 
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negative linear resistor R. 
Fig. 9. (a) Implementation of nonlinear resistor AV, ; (b) implementation of 

portrait and the PoincarC cross section. The fixed parameters 
are 

G, = 0.599mS. Gb = 0.77mS. 
1 
n G = - = -0 .77~~S,  E IV, 

C2 = 0.3406kF, L = 7.595rnH, Ro = 11.40 

and we vary the parameter C1. The implementations of the 
nonlinear resistor and negative resistor are the same as in the 
previous section. 

First we start with an attractor resembling two tori with 
the trajectory jumping between them (Fig. 12(a)-(b)). As we 
decrease the parameter C1, we obtain a torus attractor, whose 
orbit in the associated PoincarC map is a closed curve (Fig. 
12(c)-(d)). As we decrease the parameter C1 further, we 
go through a period-adding sequence of periodic windows 
of consecutively decreasing periods. Between the periodic 
windows we find torus attractors. Here we show a period- 16 
limit cycle (Fig. 12(e)-(f)), a torus attractor (Fig. 12(g)-(h)), 
a period-15 limit cycle (Fig. 12(i)-(j)), and a period-14 limit 
cycle (Fig. 12(k)-(1)). If we decrease the parameter C1 further, 
we observe a period-doubling sequence ending in a chaotic 
attractor. We show a period-4 (Fig. 12(m)-(n)), a period- 
8 limit cycle (Fig. 12(0)-(p)) and a chaotic attractor (Fig. 
12(q)-(r)). In the corresponding PoincarC maps the closed 
curve earlier associated with a torus (e.g., Fig. 12(h)) now 
begins to “deform” and starts to wrinkle and develop “folds” 
(Fig. 12(r)). As C1 is further decreased, we obtain a chaotic 
attractor similar to the double-scroll Chua’s attractor (Fig. 
12(s)-(t)j. 

A computer generated bifurcation diagram which plot wcl 
versus C1 is shown in Fig. 13. See [9] for more details on the 
torus breakdown route. 

111. UNIVERSALITY OF CHUA’S OSCILLATOR 

In this section, we give a result that shows that the vector 
field of Chua’s oscillator is topologically conjugate4 to the 
vector field of a large class of 3-D piecewise-linear vector 
fields. In the companion paper [ I ] ,  we illustrate how any vector 
field in this class can be mapped into parameters for the Chua’s 
oscillator by means of several examples. 

By a change of variables, the state equations of Chua’s oscil- 
lator (1) can be transformed into the following dimensionless 

4The vector fields f and 9 are said to be topologically conjugate if there 
exists a continuous map h with a continuous inverse such that 11 maps orbits 
o f f  into orbits of g preserving time orientation and parametrization of time 
[IO].  If dt and b ’ /  are flows o f f  and g respectively, then c.h o h = h o +i  

for all t .  This means that the dynamics of .f and g are qualitatively the same. 
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Fig. 11. Computer generated phase portrait in vpi - irp2 plane of attractors 
in Fig. 10. G, = 0.599mS, G,, = 0.77mS, C: = = -0.7mS. E = 1L.: 
(a) CI = 0.0135pF. CZ = 1.9319pP, L = 19rnH, no = 26.761; 
(b) CI = 0.019pF, CZ = 0.285pF, L = 2.056~1tH,  R” = 12.511; 
( C ) C I  = 0.0297/~F,  C2 = O.SEOGpF, L = 7.682?,1H, Ro = 13.412. 

form: 

where 

We will work primarily with the dimensionless form in this 
section. Note that there are more than one set of circuit pa- 
rameters (Cl ,  Cz ~ etc.) that maps onto the same dimensionless 
equations (4). Furthermore, by selecting the constant RC2 we 
determine how “fast” the real circuit is in comparison with 
the dimensionless system. 

3. I .  Topological Conjugacy 

in [ I  I]. First we define the Class C of vector fields in IR3. 

tion 

Here we give the theorem of topological conjugacy proved 

Deji’nition I: A dynamical system defined by a state equa- 

is said to belong to Class C iff 
1. f(.) is continuous 
2. f(.) is odd-symmetric, i.e., 

f(x) = -f(-z) 

3. IR3 is partitioned by 2 parallel boundary planes U1 and 
U-1 into an inner region DO containing the origin, and 
two outer regions D1 and D-1, and f(.) is affine in 
each r e g i ~ n . ~  

Without loss of generality, the boundary planes U, and U-1 

can be chosen to be 

U,: 5 1  = 1 
U-1 : 2 1  = -1 

Then any vector field in the family C can be represented as 

where 

5By  condition 2, the vector field in DO must be linear, i.e., it is zero at the 
origin. 
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Fig. 12. Phase portraits and Poincari maps of torus breakdown sequence. Vertical axis is i ’ < r 2  and horizonal axis is r<. l .  G, = 0.599?nS, Gb = O.Trns, 
G = & = -O.i’?nS, E = 11‘. C2 = 0.340GjsF. L = 7.595t, tH, Ro = 11.4Q: (a) Phase portrait: C1 = 0.0221jcF; (b) Poincari map: CI = 0.0221pF; 
(c) phase portrait: C1 = 0.0217jcF; (d) PoincarC map: CI = 0.0217jcF; (e) phase portrait: C1 = 0.0213pF; (0 PoincarC map: CI = 0.0213pF; ( 9 )  
phase portrait: CI = 0.0205pF;  (h) Poincart! map: CI = 0.0205pF; (i) phase portrait: CI = 0 .0192 j~F .  

Because of continuity, polynomial: 

Let ( p 1 ,  112, p3) denote the eigenvalues associated with the 
linear vector field in the region DO and let ( V I ,  v2 ~ v3) denote 
the eigenvalues associated with the affine vector field in the 
regions D1 and D p l .  

Let {Pl’ p2)  P 3 )  vl l  v2‘ v3} be the eigenval- 
ues associated with a vector field F ( z )  E C\&O, where €0 is 
the set of measure zero in the space of equivalent eigenvalue 
parameters where one of (16)-(20) is satisfied. Then, Chua’s 
oscillator with parameters defined by (22)-(23) is linearly 
conjugate (i.e., topologically conjugate through a linear map) 

We define 

Since { P I .  p 2 ,  P J ‘  q l .  4 2 ,  YJ} are uniquely determined by the 
eigenvalues {p l ,  p2,  pj; vl> vp, v3) and vice versa, we call ’9 - = O  (18) 
these the “equivalent eigenvalue parameters.” These are easier Y 1  -P1 k? 
to work with than the eigenvalues since they are all real 
numbers and are just the coefficients of the characteristic 
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Fig. 12. Phase portraits and Poincark maps of torus breakdown sequence. Vertical axis is vc2 and horizonal axis is P C . , .  G,, = 0.599mS, Gb = 0.77~~~5, 

C1 = ROliG/rF; ( I )  Poincark map: C1 = O.O17G/tF; (m) phase portrait: C1 = 0.0104pF; (n) PoincarC map: CI = 0.0104pF; (0) phase portrait: 
C1 = 0.009SpF; (p) Poincari map: c ' 1  = O . O O S S p F ,  (4) phase portrait: C1 = 0.0093pF; (r) PoincarC map: C1 = 0.0093/rF; (s) phase portrait: 
C1 = 0.0067pF; (t) Poincark map: C'I = 0.0087/ /F .  

G = 1 z -0 , -  ~ T J J , ~ .  E = 11.. C'? = 0.340GpF, L = 7.595rriH, Ro = 11.4CL: (j) Poincare map: C'l = 0.0192/rF, (k) phase portrait: 

0 same eigenvalues in each region. We shall denote C = e\&. 
d e t K  = det  ti a i 2  0:s ] = f~i2K33 - ai:jK32 = 0 The algorithm for finding the parameters that make a Chua's 

K31 K32 K33 oscillator topologically conjugate to a particular vector field 
(20) in C is as follows: 

Algorithm 1: 
1 .  Calculate the eigenvalues (p i  ~ pi I L L ) ,  and (vi vi, vi) 

associated with the linear and affine vector fields, respec- 
tively, of the circuit or system candidate whose attractor 
is being reproduced by Chua's oscillator, up to a linear 
conjugacy. 

where 
3 

K:jL 2 C~l,ja,i. i = 1, 2, 3 (21) 
j=1 

The proof of this theorem relies on the fact that two 
vector fields in C are linearly conjugate if they have the 
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2. Find a set of circuit parameters {Cl, CZ, L, R, 
Ro, G,, Gb, E }  (or dimensionless parameters 
{ a ,  PI 7,  a,  b. k } )  so that the resulting eigenvalues pJ ,  
uJ for Chua’s oscillator satisfy pJ = pi and uJ = U;, 
j = 1, 2.  3. 

The formula for doing step 2 is given by$ 

c1 = 1 

(e) 
(E) 

where { P I ,  p 2 ,  p3]  41, 42, q 3 }  are the “equivalent eigenvalue 
parameters” defined in (1 3), and 

The breakpoint of the piecewise-linear Chua’s diode, E ,  can 
be chosen arbitrarily as it will not affect the eigenvalues nor 
the dynamics in each region. 

In terms of the dimensionless parameters, the formulas are:7 

where 

Iv. BRIEF HISTORY AND SELECTED 
BIBLIOGRAPHY ON CHUA’S CIRCUIT 

The chaotic nature of Chua‘s circuit was first observed 
by Matsumoto in 1983 using computer simulations [12], 
following the instructions of Chua, who had invented this 
circuit and had explained its operating principles to Matsumoto 
moments before he was rushed to a hospital for a major 
surgery, and who did not participate in the early phases 

6When building a physical circuit, these parameters need to be scaled 
appropriately to reasonable values. 

71n the dimensionless form, the eigenvalues are normalized. This corre- 
sponds to a scaling in time which perserves the dynamics up to topological 
equivalency, which is weaker than topological conjugacy in that time scales 
are not preserved. 

Bifurcation diagram of Chua’s Oscillator 
5.5 , ! I 1 , I , I I 

Y 

10 11 12 13 14 15 16 17 
1 ” ” ” ”  

C1 (nF) 

Bifurcation diagram of torus breakdown sequence. Fig. 13. 

of this research. In acknowledging his subsidiary role as 
a computer programmer, Matsumoto had named this circuit 
Chua’s circuit [7], [12]. The first experimental Chua’s circuit 
which confirms the presence of chaos was due to Zhong and 
Ayrom in 1984 [SI, [13]. A second experimental circuit was 
reported by Matsumoto shortly after [ 141 and was designed 
by Tokunaga, who is also responsible for obtaining all of 
the experimental result presented in that paper. The global 
bifurcation landscape of Chua’s circuit [I51 was obtained by 
Komuro and a team of students of Matsumoto. The colorful 
bifurcation landscape in this paper [ 151 (shown copyrighted 
by Matsumoto in Figs. 17, 20, and 22) was drawn by a 
professional artist. The first rigorous proof of the chaotic 
nature of Chua’s circuit was given in [16], where the authors 
proved that there exists some parameters (N. /3) such that 
Chua’s circuit satisfies Shil’nikov’s theorem and, therefore, 
has infinitely many Horseshoe maps [22]. Although the authors 
in [16] are listed in alphabetical order as a compromise to 
Matsumoto’s tradition of ordering his name first in earlier 
publications on Chua’s circuit, the rigorous proof of the main 
theorem is due to Komuro. However, since the limiting Cantor 
set from a Horseshoe map is not an attractor, this result 
does not imply that the double scroll Chua’s attractor is 
directly related to the chaotic phenomena associated with the 
Horseshoe map. This unsatisfactory situation has now been 
resolved by a recent proof that a 2-D geometrical model 
of Chua’s circuit gives rise to a double Horseshoe map 
which generates strange attractors [ 171. Another milestone was 
achieved in 1990 when a canonical circuit was discovered 
which is qualitative equivalent to a 21-parameter family C of 
continuous odd-symmetric piecewise-linear vector fields [ 181. 
Inspired by a question posed by professor J. Neirynck in 199 l8  
on whether this canonical circuit is unique, a systematic search 
has since been completed by several researchers, including A. 
Huang and Lj. Kocarev, where many more distinct canonical 
circuits has been found. The universal circuit presented in 
this paper is therefore only one among many qualitatively 
equivalent circuits in the class e*.’ Since the circuit in Fig. 
2 is a direct generalization of Chua’s circuit. it is logical to 

‘This question was raised during a seminar on the canonical circuit in [ 1x1 

’This class is defined in the companion paper [ 11. 
given by Chua. 
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choose this circuit in future studies of the family C*.I0 The 
name Chua’s Oscillator was given by Madan [3], [4] in order 
to distinguish this “globally unfolded” circuit [ 111 from the 
original Chua’s circuit. 

Next we give a selected bibliography on Chua’s circuit and 
Chua’s oscillator for future researchers of these circuits. 

V. Afraimovich and L. Chua, “Enigma of the double scroll Chua’s 
attractor,” in Chua’s Circuit: A Paradigm for  Chaos (R. N. Madan, Ed.). 
Singapore: World Scientific, 1993. 
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V. CONCLUDING REMARKS 

Virtually every bifurcation and chaotic phenomena that have 
been reported in the literature from systems modelled by 
autonomous third-order ordinary differential equations have 
been observed from Chua’s circuit, which is a special case 
of Chua’s oscillator with Ro = 0. Moreover, it remains 
the only known chaotic system where in-depth theoretical, 
experimental, and numerical investigations conducted by many 
international research groups have all provided consistent 
results. In contrast, research from other disciplines are often 
restricted to only one or perhaps two of these three com- 
plementary methods of investigation because the associated 
physical systems (e.g.. plasma, turbulence, hydrodynamics, 
chemical reactions, etc.) often do not have realistic and/or 
mathematically tractable models. 

Consequently, for those readers interested in learning all 
three aspects (theoretical, experimental, and numerical) of 
bifurcation and chaos in physical systems, it suffices to study 
Chua’s circuit. An excellent sophomore level introduction to 
this circuit can be found in [19], [20]. For more advanced 
and current research results, the reader is referred to [21] for 
a compendium of 56 recent research papers on this subject, 
the Proceedings of the International Symposium on Nonlinear 
Theory and Applications (NOLTA ’93), [22], and [23]. 
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