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Chaos-Based
Cryptography:
A Brief Overview
by Ljupčo Kocarev*

Abstract—In this brief article, chaos-
based cryptography is discussed from
a point of view which I believe is closer
to the spirit of both cryptography and
chaos theory than the way the subject
has been treated recently by many re-
searchers. I hope that, although this
paper raises more questions than pro-
vides answers, it nevertheless contains
seeds for future work.
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Introduction

Over the past decade, there has
been tremendous interest in studying
the behavior of chaotic systems. They
are characterized by sensitive depen-
dence on initial conditions, similarity
to random behavior, and continuous
broad-band power spectrum. Chaos
has potential applications in several
functional blocks of a digital commu-
nication system: compression, encryp-
tion and modulation. The possibility
for self-synchronization of chaotic os-
cillations [1] has sparked an avalanche
of works on application of chaos in
cryptography. An attempt only to men-
tion all related papers on chaos and
cryptography in this short presentation
will result in a prohibitively long list;
and, therefore, we refer the reader to
some recent work [2]. Despite a huge
number of papers published in the field
of chaos-based cryptography, the im-
pact that this research has made on
conventional cryptography is rather
marginal. This is due to two reasons:
• First, almost all chaos-based crypto-

graphic algorithms use dynamical
systems defined on the set of real
numbers, and therefore are difficult
for practical realization and circuit
implementation.

• Second, security and performance of
almost all proposed chaos-based
methods are not analyzed in terms of
the techniques developed in cryptog-
raphy. Moreover, most of the pro-

posed methods generate cryptographi-
cally weak and slow algorithms.

Cryptography is generally ac-
knowledged as the best method of data
protection against passive and active
fraud [3]. An overview of recent devel-
opments in the design of conventional
cryptographic algorithms is given in
[4]. The main conclusion of the paper
can be summarized in the following
quote:

“It is quite clear that someone
with a good understanding of
present day cryptanalysis can de-
sign secure but slow algorithms
with very little effort:

For a block cipher, it is sufficient
to define a round function based on
a nonlinear operation (avoid lin-
ear rotations) and a simple mixing
component (to spread local
changes); add round keys in be-
tween the rounds (and at the begin-
ning and the end of the cipher),
which are derived in a complex
way from the key (e.g., by using the
block cipher itself with fixed round
keys). If the number of rounds is
32, or even better 64, breaking this
slow cipher will be very difficult.
(Of course it is possible to follow
this “recipe” and to come up with
a weak cipher, but this will require
some cryptographic skills!).”

Unfortunately many researchers in
chaos-based cryptography, while rush-
ing to publish a novel cryptographic
algorithm, do not follow the above
recipe and come up, although without
any cryptographic skills, with both
weak and slow ciphers. For example,
in an algorithm proposed in [5] each
character of the message is encrypted
as the integer number of iterations per-
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formed in the logistic equation. This
results in a weak and slow cipher. In-
deed, while in conventional crypto-
graphic ciphers the number of rounds
(iterations) performed by an encryp-
tion transformation is usually less than
32, in [5] this number can be as large
as 65536, and is always larger then
250. On the other hand the algorithm
is also weak: it can be easily broken
using known-plaintext attack [6].

The author of this note strongly
believes that the research on chaos-
based cryptography should be shifted
from the ad hoc design of algorithms
that are usually weak and slow, and
therefore not comparable with conven-
tional algorithms, toward better under-
standing of possible relationships be-
tween chaos and cryptography. Many
fundamental concepts in chaos theory
such as mixing, measure preserving
transformations and sensitivity have
been already applied for a long time in
cryptography. Almost 15 years before
the dawn of chaos, Shannon in his
masterpiece wrote [7]:

“Good mixing transformations
are often formed by repeated prod-
ucts of two simple non-commuting
operations. Hopf has shown, for
example, that pastry dough can be
mixed by such a sequence of op-
erations. The dough is first rolled
out into a thin slab, then folded
over, then rolled, and then folded
again, etc. . . .

In a good mixing transforma-
tion . . . functions are complicated,
involving all variables in a sensi-
tive way. A small variation of any
one (variable) changes (the out-
puts) considerably.”

A deep relation between chaos and
cryptography has not been established
yet. An important difference between

the two scientific areas lies in the fact
that the systems used in cryptography
work on a finite set, while those ap-
plied in chaos have meaning only on
a continuum. The main aim of this
short communication is to discuss pos-
sible connections between chaos and
cryptography and to point out some
directions for future research.

Preliminaries

We assume that the reader is famil-
iar with chaos theory†. In order to make
this paper self-contained we now
briefly describe three most common
cryptographic objects (called also
primitives): block-encryption algo-
rithms (private-key algorithms),
pseudo-random number generators
(additive stream ciphers) and crypto-
graphic hash functions. The complete
description of these primitives and
their properties can be found in [4].

Block ciphers transform a rela-
tively short string (typically 64 or 128
bits) to a string of the same length un-
der control of a secret key. A block-
encryption algorithm is usually written
in the form of a mapping xn + 1 =
E(xn, z), n = 0, …, k – 1, where the
plaintext x0, the cryptogram xk and the
secret key z are sequences of letters in
finite alphabets. The advantage of
block ciphers is that they form a
flexible tool that can be used in cryp-
tography: they can be used to construct
other primitives.

A pseudo-random number genera-
tor is a deterministic method, usually
described with a mapping, to produce
from a small set of “random” numbers,
called the seed, a larger set of random-
looking numbers called pseudo-ran-
dom numbers. The pseudo-random

† Editor’s comment: See “Nonlinear Dynamics of
Discrete-Time Electronic Systems” by Orla Feely,
March 2000 IEEE CAS Newsletter, http://
www.nd.edu/~stjoseph/newscas.



9

number generator is cryptographically
secure if, given the mapping that
defines the generator and an arbitrary
sequence of numbers generated by the
generator, but not knowing the seed of
the generator, it is hard to compute the
next and the previous numbers in the
sequence.

A one-way function H operates on
an arbitrary-length pre-image message
M and returns a fixed-length value, h,
h = H(M), such that given M it is easy
to compute h, given h it is hard to com-
pute M, and it is hard to find two dif-
ferent inputs with the same hash result.
Note that the above definitions are only
informal and to some level useless
without defining the word “hard”. This
may be related to the question of when
a cryptographic object is secure which
at popular level is discussed in the sec-
tion Cryptography from an Informa-
tion-Theory Point of View. However,
we should stress that primitives which
are probable secure (based on some
reasonable assumptions) are several
orders of magnitude slower than the
fastest algorithms currently in use.

Figure 1 summarizes similarities
and differences between chaotic maps
and cryptographic algorithms. Chaotic
maps and cryptographic algorithms (or
more generally maps defined on finite
sets) have some similar properties:
sensitivity to a change in initial con-
ditions and parameters, random-like
behavior and unstable periodic orbits
with long periods. Encryption rounds
of a cryptographic algorithm lead to
the desired diffusion and confusion
properties of the algorithm. Iterations
of a chaotic map spread the initial re-
gion over the entire phase space. The
parameters of the chaotic map may
represent the key of the encryption al-
gorithm. An important difference be-
tween chaos and cryptography is that
encryption transformations are defined

on finite sets, while chaos has mean-
ing only on real numbers. Moreover,
for the time being, the notions of cryp-
tographic security and performance of
cryptographic algorithms have no
counterpart in chaos theory.

We now illustrate with two simple
examples the similarities and differ-
ences between chaotic systems and
maps defined on finite sets. As an ex-
ample of a chaotic map we consider
the shift map,

x(t + 1) = ax(t) (mod 1) (1)

where the phase space X = [0, 1] is the

Figure 1. Similarities and differences between chaotic systems and
cryptographic algorithms.
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unit interval and a > 1 is an integer. In
other words, (1) is a shift over a sym-
bols. The resulting dynamics mirrors
the properties of the digits in base a of
the numbers in the unit interval. The
map is chaotic for all a > 1 with posi-
tive Lyapunov exponent.

A variety of functions and/or dis-
crete-time systems have been proposed
for use in cryptography: in all of them
the phase space of the corresponding
mapping is a finite set of integers and
all the parameters are integers. The
simplest example is the discrete phase-
space version of the shift map (1):

p(t + 1) = ap(t) (mod N) (2)

where a > 1, N, and p are integers,
and p ∈ {0, 1, …, N – 1}. If N is co-
prime to a the map (2) is invertible;
note that the shift map (1) is not invert-
ible for all a. All trajectories in finite
phase space dynamical systems are
eventually periodic. Therefore, one
may introduce the period functions PN

to characterize the least period of the
map F, that is FPN is identity and PN is
minimal, as a function of the system
size N. As a rule, these functions are
among the most complex objects
found in discrete-time dynamical sys-
tems with finite set phase space. To
show this we consider, as an example,
the map (2), with a = 2. PN has two
extreme values, the smallest being
[log log N] + 1, which occurs for N =
2k – 1, and the largest N – 1, which
occurs for prime values of N and for
which 2 is a generator of the multipli-
cative group U(N). However, the main
question remains what is the typical

value of PN. The answer is unknown
and is related to a class of number
theoretical problems, centered around
the so-called Artin’s conjecture (see [8]
and references therein). Computing
typical values of some quantity calls
for ergodic theory. This example
shows the difficulties in developing an
ergodic theory of finite phase space dy-
namical systems. On the other hand,
the ergodic theory of the map (1) is
much simpler.

The Lyapunov exponent (LE) of
the system (2) is trivially equal to 0,
because every orbit is eventually peri-
odic and will repeat itself. Therefore,
the central problem here is to estimate
LE of a typical orbit for time not ex-
ceeding its period. The analysis of pe-
riodic orbits depends crucially on the
ordering with which the orbits are con-
sidered. Two orderings, both corre-
sponding to Lebesgue measure, are
considered in the literature: ordering
according to the system size N, and
ordering according to the minimal pe-
riod PN and then lexicographically
within the same period. In the case of
the map (2), with a = 2, two different
orderings lead to two opposite an-
swers: ordering by system size yields
logarithmic compressibility of infor-
mation and zero finite-time LE (or lack
of randomness) [9], while ordering by
the minimal period leads to positive
finite-time LE and randomness [8].

Choosing a Chaotic Map

Dynamical systems with chaos
seem to be good candidates for encryp-
tion algorithms. Indeed, because
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block-encryption algorithms can be re-
written as discrete-time dynamical sys-
tems, xn + 1 = F(xn) where the initial
condition x0 is plain-text to be en-
crypted, and the final state xk is a
ciphertext, then it is the property of the
map being chaotic that implies
“spreading out of the influence of a
single plaintext digit over many
ciphertext digits”. To ensure a compli-
cated structure of trajectories of the
dynamical system proposed for an en-
cryption algorithm, we postulate that,
except being chaotic, the system
should be mixing (more precisely K-
mixing). Moreover, to ensure that the
parameters of the system can be used as
encryption keys, we postulate that the
system has robust chaos, that is, the sys-
tem is chaotic for a large set of param-
eters. We now explain the effect of K-
mixing and robust chaos on encryption.

Two general principles which
guide the design of practical algo-
rithms are diffusion and confusion.
Diffusion means spreading out of the
influence of a single plaintext digit
over many ciphertext digits so as to
hide the statistical structure of the
plaintext. An extension of this idea is
to spread the influence of a single key
digit over many digits of ciphertext.
Confusion means use of transforma-
tions which complicate dependence of
the statistics of ciphertext on the sta-
tistics of plaintext. The mixing prop-
erty of chaotic maps is closely related
to the property of diffusion in encryp-
tion transformations (algorithms). The
system F possesses the mixing prop-
erty (or simply, is mixing), if for any

two measurable sets A1 and A2, we
have limn → ∞ µ( F – nA1 ∩ A2 ) =
µ (A1) µ (A2) [10]. In other words, any
set of initial conditions of nonzero
measure will eventually spread over
the whole phase space as the system
evolves [10]. If we think of the set of
possible (sensible) plaintexts as an ini-
tial region in the phase space of the
map (transformation), then it is the
mixing property (or in other terms,
sensitivity to initial conditions) that
implies “spreading out of the influence
of a single plaintext digit over many
ciphertext digits”.

Mixing systems have also the fol-
lowing useful property [10]: if µ0 is
arbitrary measure (normalized and ab-
solutely continuous with respect to µ),
and µn = µ0(F

– n A), then µn(A) → µ(A)
for any measurable A. Thus we can say
that in dynamical systems with the
mixing property, any non-equilibrium
distribution tends to an equilibrium. In
other words, in the limit when the

Two general principles which guide
the design of practical algorithms are
diffusion and confusion. Diffusion
means spreading out of the influence
of a single plaintext digit over many
ciphertext digits so as to hide the sta-
tistical structure of the plaintext. An
extension of this idea is to spread the
influence of a single key digit over
many digits of ciphertext. Confusion
means use of transformations which
complicate dependence of the statis-
tics of ciphertext on the statistics of
plaintext.
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number of iterations tends to infinity,
the statistics of the ciphertext (com-
puted through the invariant measure)
do not depend on the statistics of the
plaintext (which correspond to the ini-
tial region in the phase space of the map).

A good encryption algorithm
spreads also the influence of a single
key digit over many digits of
ciphertext. The keys of an encryption
algorithm represent its parameters.
Therefore, we should consider only
such transformations in which both
parameters and variables are involved
in a sensitive way, that is “a small
variation of any one” (variable, param-
eter) “changes the outputs consider-
ably”. In other words, a kind of “mix-
ing property” should hold also in the
parameter space of the map, if we
would like to use chaotic maps as en-
cryption algorithm. This implies that
we consider only the maps for which
chaos is persistent under small pertur-
bations of parameters (keys).

A dynamical system is structurally
stable when small C1 perturbations
yield a topologically equivalent sys-
tem. In another words, a structurally
stable or robust system retrains its
qualitative properties under small per-
turbations. Robust or structurally
stable chaotic attractors can, eventu-
ally, ensure the diffusion property in
the key space. Algorithms based on
non-robust systems may have weak
keys. However, the majority of chaotic
attractors are structurally unstable [11].
Therefore, one should take great cau-
tion in choosing chaotic maps. It is
known that robust chaos cannot occur

in smooth systems, while structurally
stable chaos can occur in piece-wise
smooth maps [12].

One should consider only systems
that have robust chaos for a large set
of parameters (keys). The entropy of
a crypto-system is the measure of the
size of the key-space and is usually ap-
proximated by log2 K, where K is the
number of keys. Therefore, a larger pa-
rameter space of the dynamical system
implies that its discretized version will
have larger K.

Chaos from an Information-
Theory Point of View

Chaos theory, as a branch of the
theory of nonlinear dynamical sys-
tems, has brought to our attention a
somewhat surprising fact: low-dimen-
sional dynamical systems are capable
of complex and unpredictable behav-
ior. What is the origin of chaos in de-
terministic systems?

For simplicity we consider here a
discrete-time dynamical system de-
fined by iteration of the function
F: X → X, X — RN. The set of points
{x, F(x), F2(x), …} is called a trajec-
tory (or orbit) of the initial condition
x. We assume that F has a chaotic
attractor. Informally, an attractor is
called chaotic if the motion on it is un-
predictable: two nearby states on the
attractor have different and unrelated
behavior within the attractor.

The evolution of a deterministic
system is completely determined by
the vector field F and the initial con-
dition x. However, to specify com-
pletely the initial condition an infinite

Chaos-Based Cryptography:
A Brief Overview
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Figure 2. A procedure for a design
of a chaos-based block-encryption

algorithm.
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amount of information and a measur-
ing system with an infinite precision
are required, which are both intrac-
table. What are the effects of a mea-
suring system’s finite precision? Mea-
suring an initial (and future) state is
equivalent to partitioning the state
space into a finite number of regions,
and observing the evolution in this
macroscopic world. Any set of a finite
number of disjoint regions which
cover the state space is called a parti-
tion of the system. The process of par-
titioning the state space, assigning
symbols to every region from the par-
tition, and the resulting macroscopic
dynamics are called symbolic dynamics.

If the system is chaotic, then dif-
ferent initial states belonging to the
same region will produce different ob-
servations at some later time. From the
viewpoint of our measuring system,
identical macroscopic initial states
evolve differently. A loss of determin-
ism occurred, and transitions between
the regions of the partition can only be
specified by means of probabilities.
Partitioning of the state space turns the
deterministic chaotic system into an
ergodic information source which can
be analyzed in terms of information
theory. The Kolmogorov-Sinai entropy

(denoted by hKS ) is the measure of as-
ymptotic rate of creation of informa-
tion by iterating F. Systems with posi-
tive entropy are usually considered as
chaotic. The unpredictability of cha-
otic trajectories is caused by exponen-
tial separation of nearby points.
Unpredictability means uncertainty;
therefore, one should expect that the
entropy of a dynamical system is re-
lated to its positive Lyapunov expo-
nents. This deep mathematical result
(known as the Pesin theorem [13]) is
rigorously proven only for so called
Sinai-Ruelle-Bowen measure.

From the viewpoint of any measur-
ing device, if the dynamical system
produces unpredictable sequences,
then the dynamical system is called
chaotic. While the motion of the dy-
namical system in the continuous (mi-
croscopic) state space is deterministic,
its motion in the partitioned (macro-
scopic) space is stochastic and the tra-
jectories are sequences of symbols. On
the basis of the knowledge of the past
coarse-grained trajectory of the system
we can predict its future macroscopic
states only in probabilistic terms. Turn-
ing a deterministic chaotic system into
an information source via partitioning
of the state space is not in collision
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with Shannon’s note [14] that a deter-
ministic system cannot generate infor-
mation. Actually, a chaotic system
does not generate information, that is,
its evolution is completely determined
by its initial state. A chaotic system
merely converts the information about
its initial state into a form which is vis-
ible to the measuring system. Every
letter in the coarse-grained trajectory,
which is a sequence of letters, brings
an additional amount of information
about the initial state.

The word random in deterministic
dynamical systems is linked to incom-
pressibility of information: a trajectory
of the system is termed random when
the shortest program that generates it
has (essentially) the same size as the
trajectory itself. The trajectory of a
point x is called random if its algorith-
mic complexity is positive. The fol-
lowing theorem is of essential signifi-
cance in this case [15]: For chaotic
systems the trajectories of almost all
state points x ∈ X are random and their
algorithmic complexity is equal to the
Kolmogorov-Sinai entropy hKS. As a
disturbing consequence, no finite com-
puter program can produce or predict
a chaotic trajectory, or in the language
of Joseph Ford [16], for any additional
bit of the initial state, a computer pro-
gram can output only one additional bit
about the chaotic trajectory.

Clearly, positive algorithmic com-
plexity of almost all initial states does
not suffice for the randomness of tra-

jectories of a dynamical system; for
example a dynamical system with a
stable equilibrium would contradict
such a conjecture. What is the source
of the unpredictability and information
generation of a chaotic behavior? The
finite precision of any real measuring
system and the sensitive dependence
of a chaotic evolution to a change in
initial states combine to an inability for
long-term prediction of chaotic behav-
ior.

Hopefully, this section resolves the
juxtaposition of three seemingly con-
tradictory terms: “random”, “deter-
ministic” and “chaos”. Determinism of
the defining equations implies exist-
ence and uniqueness of solutions, but
it does not imply computability of so-
lutions. Chaoticity of the behavior im-
plies random trajectories that are not
computable by any finite computer
program. More on this relationship can
be found in the inspired papers by Jo-
seph Ford [16, 17].

Cryptography from an
Information-Theory Point of View

Cryptography has come to be un-
derstood to be the science of secure
communication. The publication in
1949 by C. E. Shannon of the paper
“Communication Theory of Secrecy
Systems” [7] ushered in the era of sci-
entific secret-key cryptography. Shan-
non provided a theory of secrecy sys-
tems almost as comprehensive as the
theory of communication that he had

The publication in 1949 by C. E. Shannon of the paper “Communication
Theory of Secrecy Systems” [7] ushered in the era of scientific secret-key cryp-
tography. Shannon provided a theory of secrecy systems almost as compre-
hensive as the theory of communication that he had published a year before.
Indeed, he built his 1949 paper on the foundation of the 1948 one, which had
established the new discipline of information theory [14].
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published a year before. Indeed, he
built his 1949 paper on the foundation
of the 1948 one, which had established
the new discipline of information
theory [14]. However, Shannon’s 1949
paper did not lead to the same explo-
sion of research in cryptography that
his 1948 paper had triggered in infor-
mation theory. The real explosion
came with the publication in 1976 by
W. Diffie and M. E. Hellman of their
paper, “New Directions in Cryptogra-
phy” [18]. Diffie and Hellman showed
for the first time that secret communi-
cation was possible without any trans-
fer of a secret key between sender and
receiver, thus establishing the turbulent
epoch of public-key cryptography.
Moreover, they suggested that compu-
tational complexity theory might serve
as a basis for future research in cryp-
tography. Another line of research was
established by A. C. Yao in 1982 [19]
in such a way as to preserve the origi-
nal Shannon’s information-theory
based approach to cryptography.

What is information? The amount
of randomness in a probability distri-
bution is measured by its entropy (or
information) which for a discrete prob-
ability distribution P is

H(P) = – ∑ p(x) log p(x)

where x runs over the atoms of P. In a
fundamental sense, the concept of in-
formation proposed by Shannon in his
1948 paper captures only the case

when unlimited computing power is
available. However, computational
cost may play a central role in cryptog-
raphy, and, therefore, the classical in-
formation theory may not provide a
complete framework for the analysis
of cryptographic algorithms. After
Diffie and Hellman proposed the use
of a trapdoor function as the corner-
stone for a new form of cryptography,
this deficiency was practically drama-
tized. Indeed, it may happen that al-
though the ciphertext contains all the
information about the plaintext, this
information is inaccessible, and there-
fore cannot be efficiently computed.
Thus, the question in the beginning of
this paragraph should be replaced
with: What is accessible information?
Can two successful theories, namely
Information Theory and Computa-
tional Complexity Theory, be com-
bined to capture the notion of acces-
sible information? A. C. Yao in 1982
provided the affirmative answer to this
question. Yao proposed the definition
of computationally accessible infor-
mation and used it to discuss security
for conventional cryptosystems,
pseudo-random number generators,
and trapdoor functions, subjects where
information and computational com-
plexity are closely intertwined.

The central question in cryptogra-
phy is security. The basic properties
characterizing a secure object are “ran-
domness-increasing” and “computa-

However, Shannon’s 1949 paper did not lead to the same explosion of re-
search in cryptography that his 1948 paper had triggered in information theory.
The real explosion came with the publication in 1976 by W. Diffie and M. E.
Hellman of their paper, “New Directions in Cryptography” [18].  Diffie and
Hellman showed for the first time that secret communication was possible
without any transfer of a secret key between sender and receiver, thus estab-
lishing the turbulent epoch of public-key cryptography.
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tionally unpredictable”. It is well
known that, if one of the following ob-
jects exist—a secure pseudo-random
number generator, a secure one-way
function, and a secure block encryp-
tion algorithm—then all exist. The rig-
orous definitions for “randomness-in-
creasing” and “computationally unpre-
dictable” are far beyond the scope of
this paper and we refer the reader to
[19]. The following informal defini-
tions of “randomness-increasing” and
“computationally unpredictable” are
adopted from Largarias [20] and Blum,
Blum and Shub [21]. Without loss of
generality, in the following we con-
sider only pseudo-random number
generators. A pseudo-random bit (or
number) generator is a deterministic
method (usually defined as a mapping
G : M1 → M2, where Mi are finite sets)
to produce from a small set of random
bits (called the seed) a larger set of ran-
dom-looking bits (called pseudo-ran-
dom bits). The notion of randomness-
increasing is impossible in classical
information theory because any deter-
ministic mapping G applied to a dis-
crete probability distribution P never
increases entropy, i.e., H(G(P)) ≤ H(P).
However, this may be possible when
computer power is limited. Indeed,
what may happen is that G(P) may ap-
proximate a target distribution Q hav-
ing a much higher entropy so well that,
within the limits of computing power
available, one cannot tell the distribu-
tions G(P) and Q apart. If H(Q) is
much larger than H(P), then we can
say G is computationally randomness-
increasing.

Yao [19] provided the basic insight
on the nature of cryptographically se-
cure objects: it is the notion of
computationally unpredictable. The
following informal definition of
computationally unpredictable is due
to Blum, Blum and Shub [21]. We say
that a pseudo-random number genera-
tor is polynomial-time unpredictable if
and only if for every finite initial seg-
ment of a sequence that has been pro-
duced by such a generator, but with
any element deleted from that seg-
ment, a probabilistic Turing machine
cannot, roughly speaking, do better in
guessing in polynomial time what the
missing element is, than by flipping a
fair coin. Yao proved that a pseudo-
random number generator is secure if
and only if it is polynomial-time un-
predictable.

The central unsolved question in
the theory outlined above is whether a
secure object exists. A major difficulty
in settling the existence problem for
this theory is summarized in the fol-
lowing heuristic unpredictability para-
dox [19]: If a deterministic function is
unpredictable, then it is difficult to
prove anything about it, in particular,
it is difficult to prove that is unpredict-
able. Most of the results about
unpredictability and cryptographic se-
curity follow from certain assumptions
concerning the intractability of certain
number-theoretical problems by proba-
bilistic polynomial-time procedures. For
example, the statement that the x2 mod N
generator is unpredictable is proven un-
der the so called quadratic residuacity
assumption; see [21] for details.
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Conclusion: What Is Next?

We may summarize our discussion
in previous sections as follows.

(i) The word random in determin-
istic dynamical systems is linked to in-
compressibility of information: a tra-
jectory of the system is termed random
when the shortest program that gener-
ates it has (essentially) the same size
as the trajectory itself. Determinism of
the defining equations implies exist-
ence and uniqueness of solutions, but
it does not imply computability of so-
lutions. Chaoticity of the behavior im-
plies random trajectories that are not
computable by any finite computer
program.

(ii) The amount of randomness in
a probability distribution is measured
by its entropy. A deterministic map-
ping applied to a discrete probability
distribution never increases entropy.
However, a computationally random-
ness-increasing deterministic mapping
has the property that when computer
power is limited it may increase the en-
tropy of the distribution within the lim-
its of computing power available.
Equivalently we may say that this
mapping generates computationally
unpredictable sequences of numbers.

A deterministic mapping defined
on a (sub)set of real numbers may have
chaotic behavior; in this case the map-
ping is computationally unpredictable:
a trajectory of the system is not com-
putable by any finite computer pro-
gram. A deterministic mapping defined
on a finite set is always predictable: all
its trajectories are eventually periodic.

However, it may happen that when
computer power is limited the map-
ping is computationally unpredictable:
a probabilistic Turing machine cannot
do better in guessing in polynomial
time what is the next (previous) state
of the trajectory, than by flipping a fair
coin. Whether and under what condi-
tions these two different properties of
being computationally unpredictable
can be related to each other is a cen-
tral problem of chaos-based cryptog-
raphy. The future impact chaos-based
cryptography may have on conven-
tional cryptography depends strongly
on the successful solution of this prob-
lem. A good cryptographic algorithm
offers an optimal trade-off between
security and performance. Therefore,
another important problem in chaos-
based cryptography is whether chaos
can offer improvements to the perfor-
mances of cryptographic algorithms.
In closing this paper, more detailed de-
scriptions of the problems that are of
importance for the future research on
chaos-based cryptography will be of-
fered.
• Chaos and security—Chaos is a nec-

essary but not sufficient property of
encryption algorithms. In accor-
dance with Shannon’s prescriptions
[7], every encryption algorithm pos-
sesses properties of confusion, diffu-
sion, mixing and sensitivity to
changes in plaintext and secret key.
This almost guarantees that an exten-
sion of the domain of an encryption
algorithm from a lattice to a con-
tinuum will give rise to a chaotic
map. We have done the domain ex-
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tension for the round function of the
international data encryption algo-
rithm (IDEA) [22, 23], and have nu-
merically confirmed that the newly
obtained map is chaotic. A linear in-
terpolation between the points of the
lattice was used to extend definition
of the round function to the con-
tinuum. The other way around, if a
nonlinear map is chaotic when de-
fined on a continuum, then it will
exhibit properties of confusion, dif-
fusion, mixing, and sensitivity to
changes in variables. However, in
addition a good encryption algorithm
must also be irreducible to any other
(simpler) form which makes its
cryptanalysis tractable. An excellent
example is IDEA whose basic de-
signing principle is the usage of three
different algebraic groups: XOR,
addition modulo 216 and multiplica-
tion modulo 216 + 1. The groups are
not mutually isomorphic, which Lai
and Massey, the authors of IDEA,
employ to prove that it is impossible
to reduce IDEA to a simpler form
[22, 23]. Therefore, sensitivity to
changes in initial conditions and pa-
rameters, and the mixing property of
a chaotic map do not guarantee that

its discrete version is a good crypto-
algorithm. It is a must that one
proves its cryptographic security. At
present, the notion of cryptographic
security has no counterpart in chaos
theory, and the cryptographic secu-
rity of a chaos-derived encryption
algorithm can be checked only by
means of crypto-tools.

Chaotic systems are characterized
by positive Lyapunov exponent,
positive entropy and positive algo-
rithmic complexity. On the other
hand, mappings and/or discrete-time
systems that have been proposed for
use in cryptography are defined on
finite sets of integers. In such sys-
tems, the largest Lyapunov exponent
and the complexity of an infinite se-
quence is trivially equal to 0, because
every orbit is eventually periodic and
will repeat itself. Therefore, the cen-
tral problem here is to estimate the
properties (LE, entropy, complexity
and so on) of a typical orbit for time
not exceeding its period. The ques-
tions one should try to answer are:
What is the impact of these proper-
ties on the security of the crypto-
graphic algorithms? When and under
what conditions is a deterministic

What is information? The amount of randomness in a probability dis-
tribution is measured by its entropy (or information) which for a discrete
probability distribution P is

H(P) = – ∑ p(x) log p(x)

where x runs over the atoms of P. In a fundamental sense, the concept of
information proposed by Shannon in his 1948 paper captures only the case
when unlimited computing power is available. However, computational cost
may play a central role in cryptography, and therefore the classical infor-
mation theory may not provide a complete framework for the analysis of
cryptographic algorithms.
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mapping computationally random-
ness-increasing? Can the property of
being secure be expressed in terms
of the known properties from chaos
theory?

• Chaos and performance—A good
cryptographic algorithm offers an
optimal trade-off between security
and performance. “It is quite clear
that someone with a good under-
standing of present day cryptanalysis
can design secure but slow algo-
rithms with very little effort”. The
properties of chaotic systems are as-
ymptotic ones, however the crypto-
graphic algorithms usually are built
on very rapid diffusion and/or con-
fusion properties.

One may numerically verify the
diffusion property of an algorithm in
a simple way: after how many itera-
tions (rounds) is a small cloud of ini-

tial points (plaintext) spread uni-
formly through the whole space such
that the average number of zeros (or
ones) in the block of 2p bits is p. This
number gives the strength of the dif-
fusion property in an algorithm in a
similar way that LEs measure the
strength of the chaos in continuous
systems. Do there exist measures for
the confusion? What are the proper-
ties of chaotic systems relevant for
the performance of cryptographic al-
gorithms? Can chaos theory gain in-
sight into the theory of designing
cryptographic algorithms? The main
questions to be addressed by a de-
signer of cryptographic algorithms,
including also chaos-based crypto-
graphic algorithms, are: what is the
most efficient way to design an al-
gorithm for a particular environment,
or, on which type of processor is a
particular cipher more efficient than
other ciphers?

• A continuous model of cryptogra-
phy—A central assumption in com-
puter science is that the Turing-ma-
chine model is an appropriate
model of a digital computer and
computer simulation. However, it
was recently argued that another
model of computation based on
real numbers [24, 25] is also appro-
priate and in some cases more use-
ful as a model of a computer. Both
models are, of course, abstractions
(The Turing machine employs a
type of unbounded, infinite length,
while it takes an infinite number of
bits to represent a single real num-
ber). It seems to me that it is also
appropriate, at least at the theoreti-
cal level, to consider a continuous
(real-number) model for solving
some of the problems in cryptog-
raphy. This model when used in
cryptography would be inherently
connected to chaos theory.

Figure 3. Pseudo-random ensembles are unpredictable by probabilistic polynomial-
time machines, but may or may not be predictable by infinite powerful machines.

Chaotic systems are unpredictable by infinite powerful machines (analog
computers), but may or may not be predictable by probabilistic polynomial-time

machines.
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